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Toward Simulating Dire Wildfire Scenarios
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Abstract: Recent extreme wildfires are motivating unprecedented evacuation planning. A critical need is to consider dire scenarios that
allow less time to clear an area than required. Although these scenarios often begin with an ignition near a community, any scenario can
become dire due to weather conditions, human response, technology, cascading events, and community design. Although research has widely
addressed scenarios with ample time and favorable conditions, protecting people in dire scenarios is much more challenging. We provide a
framework for generating dire scenarios that includes difficult starting conditions, delayed decision-making, variable fire spread rates, limited
warning technology, and random adverse events. The goal is to move beyond favorable scenarios and generate challenging ones that inspire
novel protective planning. A key finding is that minimizing losses in dire scenarios may involve disaster response elements not represented in
current simulation models, including improvisation and altruism. DOI: 10.1061/(ASCE)NH.1527-6996.0000474. © 2021 American Society
of Civil Engineers.

Introduction

The 2018 Camp Fire in Paradise, California, began as a scenario
that most residents would consider common based on previous
experience. The town had experienced 13 near miss fires in the last
two decades, some that resulted in stressful evacuations, but none
that resulted in any major losses. However, as the Camp Fire ad-
vanced toward Paradise at an unprecedented rate, officials planning
for a 2–3 h evacuation were unaware that homes on the north
edge of town would ignite in less than 90 min (Mooallem 2019).
The result was a dire scenario that garnered worldwide attention
and motivated a new era in wildfire evacuation planning, which has
historically been very scarce (Kano et al. 2011).

Dire scenarios have not been a focus of previous study.
Researchers and planners prefer favorable ones with ample time
and positive outcomes to highlight model and plan efficacy. The
accepted approach is to set ignition points far enough from a com-
munity to allow sufficient time for the residents to clear a study
area. However, favorable scenarios do not challenge emergency
managers to identify novel protective plans for the most difficult
cases that arise in real wildfires. Furthermore, these dire cases
are becoming more common as drought leads to larger, faster-
moving wildfires (Thompson 2020). The goal of this paper is to
propose a framework for generating dire scenarios, highlight their
value in evacuation planning, and identify research challenges and
opportunities.

Dire Scenarios

We define a scenario as “dire” if the required time to clear an area
is greater than the time available (i.e., lead time). Dire scenarios
fall into the class of extreme events where important variables are
located at the tail of their distribution (Tedim et al. 2018; Sanders
2005). Evacuation time and lead time are common metrics, where
the former is the estimated time to clear an area of its population
and the latter is the estimated time available to do so before hazard
impact (Lindell et al. 2019). Here, we adopt a dynamic perspective
and assume that both variables can be estimated at every point in
time during a scenario. The estimate at time t represents the remain-
ing lead time and evacuation time to move residents to safety.
For example, if the estimated evacuation time is 1 h, and 20 min
has transpired since it commenced, the remaining evacuation time
is 40 min. We define a direness index that yields a score at time t
across a scenario as

dijt ¼ eijt=lijt − 1 t ¼ 0::T ð1Þ

where dijt = score for community i threatened by wildfire j at time
t; eijt = time required to evacuate the remaining residents in com-
munity i from wildfire j at time t; and lijt = lead time at t before
wildfire j impacts community i. This is a socioecological metric
that integrates a human system variable (evacuation time) with a
natural system one (lead time) (Moritz et al. 2017). Fig. 1 depicts
a means to translate a score into a direness category ranging from
“routine” to “extremely dire.”

For example, assume that at 3:15 p.m. (t ¼ 0), a community has
1 h to evacuate before a fire arrives at 4:15 p.m. (lijt ¼ 1.0), and it
will take 1.25 h to evacuate the residents (eijt ¼ 1.25). Thus, the
initial state of the scenario at time t is “dire” using Fig. 1 because
evacuation time is 25% greater than lead time [ð1.25=1.0Þ − 1 ¼
0.25]. Because this score is dynamic, a scenario can enter or exit
a given dire category as events alter lijt and eijt (e.g., a blocked
egress point at time t1 that increases eijt or a change in wind di-
rection at t2 that increases or decreases lijt). In real wildfires, these
variables are uncertain and so are a direness score and associated
category. This means that a scenario that appears routine may turn
out to be dire.

To provide an example, Fig. 2 depicts the anatomy of a routine
scenario that turns dire due to a dramatic increase in a fire’s
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spread rate. At 1:00 p.m., a deputy reports a fire 2 mi from a com-
munity traveling 1 mph toward it, and officials estimate the initial
lead time at 2 h. Evacuation time is estimated at 1.5 h, so the
scenario is not initially dire (1.5=2.0 − 1 ¼ −0.25). Officials warn
the residents, and the plan is to have the area cleared by 2:30 p.m.
At 1:30 p.m., a gusting tailwind triples the fire spread rate to 3 mph,
and the lead time drops from 1.5 h to 0.5 h. Because the remain-
ing evacuation time is 1 h, the scenario turns “very dire” (1.0=
0.5 − 1 ¼ 1.0). At 1:45 p.m., officials designate a temporary refuge
area (TRA) to reduce the required time to protect the remaining
residents by 15 min. Despite their best efforts, the fire enters the
community at 2:00 p.m., but some residents have yet to clear the
area or secure shelter, which could lead to casualties.

Dire Scenario Sources

Dire scenarios arise from a variety of sources. Foremost is a wild-
fire ignition point close to a community because this condition
offers less time to respond than one further away. A second factor
is detection time, which is usually brief because citizens rapidly
report smoke plumes, but nighttime wildfires can go undetected
longer when people are asleep. A third factor is official decision-
making because emergency managers may delay the decision to
alert or warn residents to avoid unnecessarily disrupting a commu-
nity based on their threat assessment (Drews et al. 2014). This can
lead to a dire scenario if officials subsequently issue a warning at
the last minute (Cova et al. 2017). Notification systems can also

affect a scenario if many residents do not receive an alert or warn-
ing in time (Lindell 2018; Doermann et al. 2021). Public response
rates can affect scenario direness due to low-mobility households
(e.g., age, disability, resources), a low warning compliance rate, or
a tendency to adopt a wait-and-see approach (Dash and Gladwin
2007; McCaffrey et al. 2018; Edgeley and Paveglio 2019). Traffic
factors can affect a scenario, as in the case where residents have
difficulty finding a safe exit route (Brachman et al. 2019) or when
many households depart at once and induce gridlock (Chen and
Zhan 2008). Community design can affect a scenario if a road net-
work cannot support rapid residential evacuation (e.g., many homes
and few egress points).

There are many recent examples of dire wildfire scenarios. The
2018 Camp Fire is an iconic example because it includes many in-
teracting factors. This case included a fast-moving fire that ignited
near a low-egress community with many low-mobility residents.
Furthermore, officials accustomed to prior near misses waited to
assess the fire’s direction and spread rate before ordering the first
phased warning, and many residents did not receive a warning due
to a low reverse-911 subscription rate (Todd et al. 2019). On the
favorable side of the scenario, officials and residents were highly
prepared and experienced with a state-of-the-art plan, and officials
successfully reversed a lane on the main exit to increase the capac-
ity of a key traffic bottleneck. Other examples of recent dire wildfire
scenarios include the 2020 Almeda and Holiday Farm fires in
Oregon, which both ignited close to a community and offered very
little time to act. The 2017 Tubbs Fire in California was also dire
given that it moved 12 mi in its first 3 h through populated areas on a
Sunday night, and many residents reported not receiving a warning.

Modeling Dire Scenarios

To generate a dire scenario, a modeler can start with lead time less
than evacuation time or design a scenario where the former falls
below the latter at any point. Fig. 3 shows a scenario dashboard
with factor categories (columns) to generate a dire scenario ranging
from no impediment (green) to a minor impediment (yellow) to a
major impediment (red). For example, Scenario 1 (row 1) includes
minor impediments in the ignition location, fire spread rate, public
response, and mobility. This scenario could be a proximal fire
moving moderately fast toward households, some of whom volun-
tarily delay their decision to leave and others with low mobility.
Scenario 3 has major impediments, including official decision-
making, notification and warning, public response, and traffic con-
gestion. In this scenario, the fire started far from the community, but
delays and difficulties in warning residents ultimately led to a dire
scenario with traffic congestion. Scenario 4 is the most challenging,
with major impediments in all of the factor categories. Although
Fig. 3 lists impedance categories in the columns, an analyst must
provide the details for each category to create a realistic scenario.

Fig. 1. (Color) Dire evacuation scenario categories based on a score.

Fig. 2. (Color) Anatomy of a dire scenario due to a sudden increase in
fire spread rate.

Fig. 3. (Color) Dire scenario dashboard where scenarios (rows)
progress from routine to extremely dire (1–4) due to varying factor
impediment levels (green, yellow, red).
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In addition to combining factors to create a dire scenario, we
need new metrics to compare outcomes that may not be successful.
Wolshon and Marchive (2007) provide one example: the number of
vehicles that do not clear a community in time when the lead time
is short. This does not mean that the fire will trap the remaining
residents because recent events reveal that many evacuees safely
navigate burning corridors. Beloglazov et al. (2016) also developed
a valuable dynamic metric to estimate the population threatened
throughout a wildfire scenario called the exposure count, which
may rise or fall as scenario direness changes.

Reducing Scenario Direness

Dire scenarios can become less so due to natural and human factors
that increase lead time, decrease evacuation time, or both. Factors
that may increase lead time by reducing a fire’s spread rate include
weather (natural), as well as fuel management and fire suppression
(human). Although fuel management and fire suppression refer to
an array of techniques, modelers do not generally include their ef-
fects in coupled fire-evacuation model scenarios because of a lack
of data on local fuel management actions. There are also limits on
including structural fuels in fire models, which reduces the predic-
tive accuracy of fire spread rate estimates through communities
(Kaufman and Roston 2020).

Many factors can decrease evacuation time before and during a
scenario. Examples include phased warnings (Li et al. 2015), lane
reversal (Xie et al. 2010), and traffic signal optimization (Ren et al.
2013). To broaden the purview, protection time is preferable be-
cause there are other options. Fire shelters and safety zones
are alternatives that have multiple benefits (Amideo et al. 2019).
First, they can protect people who cannot leave in time due to
low mobility or egress issues, and second, they can reduce traffic
delays for residents who decide to leave (i.e., shorter travel times).
Households and communities can construct or assign areas of ref-
uge, which can be public or private and permanent or temporary.
In the 2018 Camp Fire, parking lots and community buildings were
designated as temporary refuge areas (i.e., improvised fire shelter
and safety zones), and designating and constructing places of
refuge is a growing need. Steer et al. (2017) and Shahparvari et al.
(2016) provide representative examples of optimal plans that com-
bine evacuation and refuge shelters to protect people.

Many facets of human response in an actual wildfire can be
challenging to model. One example not represented in current mod-
els is improvised protective actions. However, improvisation and
flexible decision-making is often required in responding to dire dis-
aster scenarios (Webb and Chevreau 2006). One recent example is
the use of military transport helicopters to rescue campers trapped
by the 2020 Creek Fire in California (Fuller and Mervosh 2020).
Altruism is another neglected factor, particularly for many individ-
uals caught in uniquely dire circumstances. Altruism refers to self-
selected individuals who demonstrate a willingness to help others
address a problem (Batson and Powell 2003). Altruistic examples
in wildfires include (1) citizens providing rides for others, (2) citi-
zens providing temporary refuge shelter, (3) citizens providing
information via social media, (4) individuals clearing blocked
traffic, and (5) citizens aiding in relocating vulnerable popula-
tions (e.g., medical facilities, retirement homes, childcare centers).
Altruism relates to social capital because communities with greater
social cohesion are more likely to have residents help one another
(Aldrich and Meyer 2014). One example in the 2018 Camp Fire
was Joe Kennedy, who single-handedly cleared abandoned cars
that blocked traffic with a bulldozer (Mooallem 2019). Modelers
may not have considered altruistic behavior because the need only

arises in very dire scenarios, and it is difficult to predict how much
might be displayed or where. However, altruistic acts can also lead
to losses if people take excessive risks in helping others. Thus, it
represents a challenging research frontier in creating more realistic
agent-based wildfire evacuation simulations (i.e., agents helping or
cooperating with other agents).

Conclusion

Although dire wildfire scenarios have not been a focus of study or
modeling, they hold potential to help emergency planners and com-
munities cooperate and consider novel protective actions. Key
questions for further research include:
1. What can we learn from studying and modeling dire scenarios

over favorable ones?
2. How does the direness of a scenario vary geographically across

a threat area?
3. What factors serve to make a scenario more or less dire at differ-

ent scales?
4. How can we incorporate protective behavior found in real wild-

fires into simulation models (e.g., improvisation, altruism)?
5. How many places of refuge do we need, where should they be

located, and what capacity should they have to reduce likely
scenarios from dire to routine?

6. What advanced technologies can help reduce the likelihood of
dire scenarios before one occurs (e.g., artificial intelligence,
wireless emergency alerts, automated fire detection, real-time
decision support) (Zhao et al. 2021)?

7. What technology can aid in responding to a dire scenario
(e.g., rescue robots, protective fire suits, temporary fire
shelter)?

8. How can we visualize the dynamics of dire scenarios, as well as
the beneficial and adverse events that affect lead and evacuation
time, to improve situational awareness and decision-making?
Studying and modeling dire scenarios are important because

they are challenging and increasing in frequency (Schoennagel
et al. 2017). The benefit of simulating them is that it may lead to
better planning and outcomes in cases where more things go wrong
than right. Modeling wildfire evacuation as a coupled natural-
human system is challenging (Ronchi et al 2019; Li et al. 2019),
and there are limitations to the framework presented herein due to
human behavior and uncertainty. Although the science of simula-
tion continues to advance, we still have a long way to go toward
incorporating many events that occur in real wildfires.

Data Availability Statement

No data, models, or code were generated or used during the
study.

Notation

The following symbols are used in this paper:
dijt = direness score for community i threatened by wildfire j at

time t;
eijt = time required to evacuate remaining residents in

community i from wildfire j at time t;
i = index of communities;
j = index wildfires;

lijt = lead time at t before wildfire j impacts community i; and
t = index of time.
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