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Abstract: This paper presents a time- and cost-efficient method for the management of construction
and demolition (C&D) debris at construction sites, demolition jobsites, and illegal C&D waste
dumping sites. The developed method integrates various drone, deep learning, and geographic
information system (GIS) technologies, including C&D debris drone scanning, 3D reconstruction
with structure from motion (SfM), image segmentation with fully convolutional network (FCN),
and C&D debris information management with georeferenced 2D and 3D as-built. Experiments
and parameter analysis led us to conclude that (1) drone photogrammetry using top- and side-view
images is effective in the 3D reconstruction of C&D debris (stockpiles); (2) FCNs are effective in
C&D debris extraction with point cloud-generated RGB orthoimages with a high intersection over
union (IoU) value of 0.9 for concrete debris; and (3) using FCN-generated pixelwise label images,
point cloud-converted elevation data for projected area, and volume measurements of C&D debris is
both robust and accurate. The developed automatic method provides quantitative and geographic
information to support city governments in intelligent information management of C&D debris.

Keywords: drone photogrammetry; image segmentation; volume measurement; concrete debris

1. Introduction

With the largest concrete consumption in the world in 2019, China has been generating
an increasing amount of construction and demolition (C&D) debris as a result of construction,
renovation, and demolition activities [1,2], the majority of which, however, has been landfilled
or illegally dumped, causing adverse environmental impacts on the soil and water. Despite
local investigations and regulations, such disposal and illegal dumping continue to exist
due to the lack of automatic C&D identification and volume calculation tools. Therefore, we
propose an automated method for C&D debris management at construction and demolition
jobsites, landfill sites, and illegal dumping sites, which utilizes drone photogrammetry, deep
learning, and geographic information system (GIS) in C&D debris surveying, detection,
measurement, and information management. In addition, concrete debris detection and
quantification experiments were conducted on an illegal dumping site, and the application
benefits of the new method are discussed and summarized here. The method developed in
this study provides quantitative and geographic information to support city governments and
the related departments in C&D debris intelligent information management.
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2. Background
2.1. Construction and Demolition Debris Management

Global cement production was estimated at approximately 4.1 billion tonnes (BT)
in 2019 by the European Cement Association [1]. This huge amount of cement products
indicates that the construction industry consumed a total of 27.4 billion tonnes (BT) of
concrete worldwide in 2019, with approximately 15.4 BT in China, 1.2 BT in the EU, and
0.6 BT in the USA (note that in this calculation, concrete is assumed to be made of 15%
cement, 75% aggregate, and 10% water) [1–3]. To meet such demand in China, its cement
production increased from 1.08 BT to 2.3 BT from 2005 to 2019, while cement production
has decreased in developed countries, dropping from 0.25 BT to 0.18 BT in the EU and from
0.1 BT to 0.09 BT in the USA between 2005 and 2019 [1,2]. On the other hand, while the
amount of construction and demolition (C&D) waste has remained stable in developed
countries, it has increased substantially in China due to construction, renovation, and
demolition activities in residential, non-residential, and civil infrastructure projects. For
example, approximately 0.85 BT of C&D waste was generated in the EU in 2012 (34% of
total waste) compared with 0.83 BT in 2018 (36% of total waste) [4,5], whereas in China, it
doubled from an estimated amount of 1.54 BT in 2005 to 3.53 BT in 2013 [6–8].

The material composition of C&D waste is mostly concrete, metal, mortar, brick/block,
plastic, and timber, where concrete debris typically contributes the largest percentage (60%
by weight), followed by brick (21%) and mortar (9%) [7,9]. In developed countries, much of
this waste is reused; for example, 76% of C&D debris was processed for further use in the
USA, and most concrete debris was recycled into aggregates or new concrete products [10].
On the contrary, China has a rather low C&D debris reselling and recycling ratio of 8%,
indicating that 92% of concrete, brick, and mortar waste is landfilled [9]. This is partially
because the potential recycling values of concrete, brick, and mortar in China are only 4%
of the recycling value of metal, which is relatively low compared with other developing
countries, e.g., 10.4% in Bangladesh [8,9]. Moreover, to further reduce the transportation
and landfill cost of C&D waste, much of the concrete debris is dumped at illegal sites,
imposing substantial environmental impacts on the soil, surface water, groundwater, and
air quality after long-term sun exposure and saturation by rain.

Figure 1 shows the conditions of two illegal dumpling sites in Shenzhen, China,
captured by an engineer of the local construction waste management team during a field
visit. In Shenzhen, the identification and investigation of C&D waste is conducted via
field visits and on-site measurements, which are time- and labor-consuming to achieve
satisfactory results. In addition, illegal dumping sites are typically located in rural and
mountainous areas, where access to the waste stockpile is limited and the soft soil surfaces
also create safety hazards of sliding and falling debris. Such barriers greatly hinder the
construction waste management team’s ability to accurately measure the quantities of
C&D debris, impacting the decision making of subsequent transporting and cleaning tasks.
Although the local regulation “Shenzhen Construction Waste Management Method” specifies
the punishment for illegal dumping, it does not differentiate the severity of violations such
as dumping areas and volumes [11]. As a result, illegal dumping of C&D waste continues
to exist in Shenzhen, China. Therefore, it is necessary and urgent to employ an automatic
construction waste stockpile measurement tool for the construction waste management
team to efficiently identify C&D waste quantities and accurately issue citations based on
measurable individual violations.
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Figure 1. (a,b) Illegal construction waste dumping sites in Shenzhen, China (Images by authors).

2.2. Literature Review

Previous research deployed remote sensing (RS) technologies in construction waste
management, such as satellite imagery. The benefit of its extensive areal coverage and
feasibility has been demonstrated in illegal landfill detection [12,13], monitoring the surface
temperatures of municipal solid waste landfill sites [14], and volume estimates of stockpiled
reclaimed asphalt pavement inventory [15]. However, the resolution of typical satellite
imagery limits its application in investigating scattered C&D waste illegal dumping sites
in urban, suburban, and rural areas. To obtain high-resolution aerial images, drones and
cameras are a potential solution that has been successfully applied in 3D mapping and
surveying [16–21], building and infrastructure structure inspection [22–27], and search
and rescue applications [28–30]. Furthermore, the advancement of structure from motion
(SfM) photogrammetry has made it possible for convenient aerial image-based 3D recon-
struction with ready-to-fly consumer drones, e.g., DJI Mavic 2 Pro (SZ DJI Technology,
Shenzhen, China), which can achieve high accuracy within 5 cm error in both horizontal
and vertical coordinates [16,31,32], and the obtained point cloud can be used in soil volume
estimation [17,32,33].

Furthermore, with the advancement of deep learning technologies, e.g., convolutional
neural network (CNN)-based image classification and fully convolutional network (FCN)-
based image segmentation, automated object detection has become more convenient and
accurate in images no matter the target objects’ sizes and shapes [22,25,34–41]. Researchers
have conducted several studies in waste image classification and waste material detection,
including municipal solid waste and construction waste, which were separated as “eyes”
and a “brain” in domestic waste automatic sorting machines and construction waste
recycling robots (see Table 1). These previously developed approaches are all CNN-based
image classification methods, which are suitable for extracting one target object from a
small image (equivalent to multiple target objects in a large image).

Table 1. Waste classification and waste material detection via deep learning.

Task (Reference) Objects Model Image Size

Waste image classification [34] Cardboard, glass, metal, paper, plastic,
and trash ResNet18 256 × 256

pixels
Construction waste material classification

(image captured above trash bin) [35]
Timber, plastic, brick and concrete,

carboard, and polystyrene VGGNet 224 × 224
pixels

Truckload image classification (image
captured above waste bulks) [36]

Inert (e.g., concrete and bricks) and
non-inert materials (e.g., wood, plastic,

and bamboo)
DenseNet169 -

Nails and screws recycling with a robot on
construction sites [37] Nails and screws Faster R-CNN -

Waste classification for an automatic sorting
machine [38] 13 categories of municipal solid waste VGGNet 160 × 160

pixels
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However, for extracting stockpiled C&D materials, e.g., concrete debris, from drone
imagery, FCN-based image segmentation is required, where all pixels belonging to concrete
debris are expected to be assigned a corresponding class label, as in [22,42]. The image
segmentation results will help estimate the projected area of concrete stockpiles if the
ground sampling distance (GSD) is known for the drone images and also can be used for
stockpile volume estimation if the images’ elevations are known.

3. System Design and Development
3.1. System Overview

To facilitate construction waste management and alleviate related environmental con-
cerns, we propose a time- and cost-efficient method that integrates drone photogrammetry,
deep learning, and GIS to automate the process of C&D debris identification and measure-
ments at construction and demolition jobsites, landfill sites, and illegal dumping sites, as
illustrated in Figure 2.
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Figure 2. Enhanced construction waste intelligent information management system.

Figure 3 presents the overall process used in the proposed automated method for
C&D debris detection, measurement, and documentation, which are explained using waste
concrete debris (written as WC for the remainder of the paper), including C&D debris
scanning, SfM photogrammetry, point cloud RGB texture and elevation feature image
generation, deep learning-based segmentation, and C&D debris extraction, measurement,
as-built modeling, and GIS mapping.

3.2. Aerial Image Collection and Photogrammetry

To enhance the SfM photogrammetry performance, the following scanning strategies
are recommended in aerial image collection: (1) on a forward path, set the drone gimbal’s
pitch axis at negative 90◦ to make the camera lens face the ground for capturing overlapped
top-view images of C&D debris (stockpiles), such as those shown in Figure 4b; (2) on
a backward path, set the pitch axis at negative 45◦ to capture side-view images of the
C&D debris (stockpiles), as shown in Figure 4c; and (3) hover above the center of each of
the scanned C&D stockpiles to capture additional top-view images for global positioning
system (GPS) information collection.

Following that, we can import the captured 90◦ and 45◦ images into SfM photogram-
metry software, such as Autodesk ReCap Photo (Autodesk, Mill Valley, CA, USA), to
generate a 3D mesh model (Figure 4a) and a 3D point cloud for the scanned site.
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3.3. Point Cloud Feature Image Generation

Orthophoto and digital elevation model (DEM) images can be generated from pho-
togrammetry software, i.e., ReCap Photo. The resolution of the DEM image, however, is
only one-tenth of the orthophoto, with, for instance, pixel dimensions of 294 × 335 com-
pared to 2940 × 3359, respectively, as demonstrated in Figure 5c,b. The low resolution of the
DEM image makes it difficult to accurately register elevation data to each RGB pixel in the
orthophoto. Fortunately, each point in photogrammetric results has multiple attributes, e.g.,
“RGB” and “elevation”, which can be visualized using different views, scales, and colors in
point cloud visualization and editing software. As a result, Autodesk ReCap Pro (Autodesk,
Mill Valley, CA, USA) was used to generate RGB texture and elevation feature images for
point clouds. For example, in Figure 5a, the “RGB” (red, green, blue) option displays points
with camera-captured colors, while the “elevation” view represents each point’s height in
Z-coordinates [43]. Once the perspective mode is turned off, the orthographic top-view of
an RGB point cloud in Figure 5a is similar to a large-sized orthophoto in Figure 5b, and
the top-view of an elevation point cloud in Figure 5a is similar to a DEM in Figure 5c. By
setting the same scale, the orthographic top-view images of the RGB texture and elevation
of a point cloud in ReCap Pro are originally linked to the same pixel coordinates, as shown
in Figure 5a.
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Accordingly, we designed a screenshot tool to obtain the RGB (in 24-bit) and elevation
(in 8-bit) images from ReCap Pro for deep learning model training and testing data set
preparation with the following steps: (1) crop the 1080 p capture by removing the toolbars
in each side of the capture, and (2) further remove the black margins on each side of the
cropped capture to obtain the finalized region annotated in Figure 5a. The ground sampling
distance (GSD) of the future images can then be determined via Equation (1).

GSD = Site width/ Image width (1)

where the Image width is the width of the finalized region, such as the examples shown in
Figure 3, and the Site width can be accurately measured from ReCap as the ortho distance
annotated in Figure 5a. In addition, a median filter [44] with a size of 11 × 11 pixels is
proposed to smooth (replace) point gaps, shown as black in Figure 5a, to obtain a smoothed
elevation image but maintain the edges of elevation changes.

Furthermore, we also developed a Pointcloud2Orthoimage (P2O) tool (code and demo
on [42,45]) to automatically generate feature images of orthoimage and elevation images
from a point cloud file. The generated feature images have unlimited size, which means any
scanned large site can be presented in a single-frame, high-resolution image. Meanwhile,
the differently sized RGB feature images also have the same GSD.



Drones 2022, 6, 279 7 of 21

3.4. Pixelwise Segmentation Models and Label Image Generation

In this research, two deep learning models (FCNs), a convolutional encoder-decoder
network (Table 2) and a U-Net [46], are compared for WC (label = 255) and non-WC
(label = 0) binary segmentation. Previous studies showed that the U-Net [47] can be
implemented with a Sigmoid activation function using two integers of 0 and 1 to achieve
suitable performance in binary classification for different shaped and sized AEC objects [22].
Thus, we used the Sigmoid function in the end layer of the encoder-decoder as well.
Following that, the one-channel pixelwise label image has a pixel value range of 0 to 255
after multiplying by 255 the Sigmoid results, which are in the range of 0 to 1. In addition,
the encoder-decoder only uses three max pooling layers and three up-sampling layers to
ensure the label image outputs have the same dimensions as the ortho-image inputs. Hence,
the encoder-decoder is lighter (has much fewer layers, channels, and parameters) than the
U-Net, and more likely to be implemented by a video card (GPU) with fewer CUDA cores.

Table 2. Convolutional encoder-decoder network model layers.

Blocks Layers (Kernel Size) Strides Padding Filters Activations Blocks Layers (Kernel Size) Strides Padding Filters Activations

Input input_1 - - - -

Decoder

conv2d_4 (3 × 3) 1 same 256 ReLU

Encoder

conv2d_1 (3 × 3) 1 same 64 ReLU up_sampling2d_1 (2 × 2) 1 - - -
max_pooling2d_1 (2 × 2) 2 same - - conv2d_5 (3 × 3) 1 same 128 ReLU

conv2d_2 (3 × 3) 1 same 128 ReLU up_sampling2d_2 (2 × 2) 1 - - -
max_pooling2d_2 (2 × 2) 2 same - - conv2d_6 (3 × 3) 1 same 64 ReLU

conv2d_3 (3 × 3) 1 same 256 ReLU up_sampling2d_3 (2 × 2) 1 - - -

max_pooling2d_3 (2 × 2) 2 same - - Output conv2d_7 (3 × 3) 1 same 1 Sigmoid

Since directly processing a large image requires more memory in a single GPU, we
applied a disassembling and assembling algorithm [48] for both model training and predic-
tion stages. In detail, a large image was first disassembled into multiple small patches with
dimensions of 128 × 128 pixels, each of which overlapped 50% with adjacent small patches
in both width and height directions. Then, for each large image, FCNs processed the
disassembled small patches rather than directly processing the full-resolution input image.
The FCNs then generated small-patch outputs that were assembled to produce a label
image with the same dimensions as the high-resolution input RGB image. Consequently,
with the 128 × 128-pixel small patch as the input, the proposed encoder-decoder model
only has 1,330,305 parameters, while the complicate U-Net has 23.33 times more parameters
(31,032,837). As a result, the proposed FCN-based pixelwise segmentation method can be
run on a workstation with a Core i7-7800X CPU@3.5 GHz, 32GB RAM, and 11GB GDDR5X
memory GeForce GTX 1080 Ti GPU for pixelwise label image generation for large-sized inputs.

Moreover, we propose the following data augmentation (DA) strategies in preparing
the 128 × 128-pixel RGB image and label image samples. (1) Randomly flip the image and
label in one of the following options: horizontal, vertical, both horizontal and vertical, or
non-flipped. (2) Randomly uniformly resize the flipped image and label by a factor in the
range of [0.5, 1.5]. (3) Randomly rotate the resized image and label in the range of [1, 89]
degrees (note that the resized image and label were padded with sufficient black margin,
i.e., 0 values, prior to rotation to retain all relevant textured regions). (4) Either randomly
conduct perspective transformation of the image and label (keep left, right, top, or bottom
edge the same) or not. (5) Cut the black margins (i.e., left, right, top, and bottom edges) from
the transformed image and label. (6) Pad the remaining image and label with 0 values to be
multiples of 128 pixels in size. (7) Randomly adjust the padded image’s brightness, color,
contrast, or sharpness by a value in the range of [0.5, 1.5] [49] (note that adjustments are not
applied to the label). (8) Rotate the adjusted image and label by 0◦, 90◦, 180◦, and 270◦ (when
combined with step (2), this covered nearly all possible 360◦ rotations). (9) Crop the four sets
of rotated images and labels into 50% overlapped 128 × 128-pixel small patches by moving a
128 × 128-pixel slide window with a stride of 64 pixels in both width and height directions.
(10) Discard black image and label samples, i.e., all pixels with a value of 0, for reducing the
overall size of training data sets. Consequently, well-trained image segmentation models can
be obtained under the condition of limited model training data sets.
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3.5. C&D Debris Extraction, Measurement, Modeling, and Mapping

We used the f indContours() function [50] to extract the contours of all individual C&D
debris (stockpiles) that occurred in a pixelwise label image and return a list of contours,
irrespective of their sizes (measured in pixel area). This meant that the fragile debris was
also included in the return list. Thus, an area filter of 10,000 pixels was used to skip thin
debris as noise. An example of an extracted contour is shown in Figure 3, which is the
boundary of a WC stockpile. Each contour’s vertices’ local pixel coordinates [u, v] can then
be transformed into real-world coordinates [X, Y, Elevation] via Equation (2): X

Y
Elevation

 =

 (u − Image width/2)× GSD
−(v − Image height/2)× GSD

Elevation image [u, v]/255 × (Elevationmax − Elevationmin) + Elevationmin

 (2)

where Image width/2 and Image height/2 set the origin of the customized real-world
coordinates at the image center. Alternatively, the origin location can be set at a known
ground control point. Elevationmin and Elevationmax are the minimum and maximum
elevation values of the elevation image in the range of [0, 255], in which Elevationmax
corresponds to a grayscale value of 255 and Elevationmin is equivalent to a grayscale value
of 0. Thus, when assuming C&D debris are evenly distributed across the base area and
along the stockpile height, the projected area and volume of C&D debris can be estimated
using Equations (3a) and (3b):

Debris area = Number o f pixel × GSD × GSD (3a)

Debris volume = Debris area × (Average height − Base height) (3b)

where Average height is the mean elevation value of the contour enclosed region of the
smoothed elevation image. When the ground surface is a flat plane and the customized
origin is set on that plane, the Base height is equal to zero. Alternatively, the Base height can
be set as the mean elevation value of the boundary of the C&D debris area. The estimated
geometry data are saved in a comma-separated value (CSV) file (Figure 6c) along with the
extracted GPS data, which was imported into ArcGIS Online (Esri Redlands, California)
for geographic visualization and information management. The converted real-world
coordinates (units in meters) of each extracted C&D debris area are initially saved in text
files (Figure 6a) and then converted to a single script file (Figure 6b) (units in millimeters)
for automatic drawing in Autodesk AutoCAD/Civil 3D (Autodesk, Mill Valley, CA, USA)
like in [45]. Furthermore, a C&D debris stockpile point cloud file (Figure 6d) is produced
by using all C&D pixels of the RGB image and elevation image, and the same output is also
generated for the projected stockpile’s base, as shown in Figure 6d.
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4. Experiments and Results
4.1. Experimental Site and Data Set Preparation

An illegal C&D waste dumping site (Figure 4), which was previously an abandoned
industrial building in Shaoguan, China, was selected for experiments. As shown in Fig-
ures 1, 4 and 7, typically only a single material category exists in a stockpile because truck
drivers want to quickly complete their illegal dumping behaviors. As a result, it is their
best choice to dump at a clear site without any previously dumped C&D debris. Thus, it is
reasonable to assume that the composition of C&D debris was evenly distributed across
the area and elevation of the stockpile. Two sets of aerial images were collected from 14 to
15 April 2021 with a Hasselblad L1D-20c aerial camera (1” CMOS, F/2.8, 20 megapixels)
via a DJI Mavic 2 Pro drone (SZ DJI Technology, Shenzhen, China). We manually controlled
the drone to hover over the site at altitudes of 10 m, 20 m, and 40 m to capture images.
Two point clouds were then generated via ReCap Photo, as shown in Figure 7a, which
focused on a WC stockpile, and Figure 7b, which mainly covered a soil stockpile. The two
point clouds were separately imported into ReCap Pro to export two sets of RGB images
(in orthographic top-view), including three 2048 × 2048-pixel RGB images (Figure 7c) for
model training and two 2048 × 2048-pixel RGB images (Figure 7d) for testing. The exported
images are similar to the orthophoto but have gaps among points due to the nature of the
source point cloud, whereas the orthophotos are continuous photographic images without
gaps. Following that, the 2048 × 2048-pixel label images (see Figure 7c,d) were manually
created by annotating WC pixels with a value of 255 and non-WC pixels with a value of 0.
The data sets are available in [45].
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4.2. Image Segmentation Model Training, Testing and Comparison
4.2.1. Model Training

Both FCNs were set up using Keras 2.3.1, Python 3.6.8, OpenCV 3.4.2, and TensorFlow-
GPU 1.14 software packages, and run on a workstation with 2 × Xeon Gold 5122@3.6GHz
CPUs, 96GB DDR4 2666 MHz memory, and 4×11GB GDDR6 memory GeForce RTX 2080
Ti GPUs for model training. In model compiling, the encoder-decoder applied the Keras
settings of optimizer = ‘rmsprop’ and loss = ‘mse’, and the U-Net applied the settings of
optimizer = ‘adam’ and loss = ‘binary_crossentropy’. In addition, the following common con-
figurations were set for model training and validation: (1) callbacks = [EarlyStopping(monitor
= ‘val_loss’, patience = 10)] to avoid model overfitting, which stops model training when the
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validation loss does not decrease for 10 epochs; (2) epochs = 100, which stops model training
at the 100th epoch; and (3) validation_split = 0.05, which uses 5% of samples for validation
during model training.

By performing 11 rounds of the 10 steps in the combined data augmentation (DA)
process (which skips random processing steps (1) to (4) and (7) in the first round to
keep the original image and label, and then runs all steps for the remaining rounds), the
created model training data sets would have sufficient size, shape, color, orientation, and
perspective differences to characterize a range of WC and soil stockpiles. As the DA was
randomly conducted in model training, the encoder-decoder was trained on 80,071 samples
and validated on 4215 samples, and the U-Net was trained on 74,725 samples and validated
on 3933 samples by the setting of validation_split = 0.05. The plots of training and validation
loss and accuracy are shown in Figure 8. The encoder-decoder terminated early (at the 39th
epoch) with a training loss value of 0.0087 and accuracy of 0.9852, and a validation loss of
0.0182 and accuracy of 0.9719. The U-Net training was completed at the 100th epoch (i.e.,
the early stopping function was not activated as its criteria was not met) with a training
loss of 0.0210 and accuracy of 0.9949, and validation loss of 0.0477 and accuracy of 0.9878.
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The U-Net training typically took 159–162 s for each epoch on the four-GPU worksta-
tion, while the encoder-decoder averaged 45 s for each epoch. This is reasonable given that
the U-Net has more layers and parameters than the proposed encoder-decoder (Table 2).
For future practice, using the simple encoder-decoder would be a fast implementation
option when new data sets (image and label image) should be prepared, and new FCN
should be trained for the detection of other C&D materials.

4.2.2. Model Testing

Since the Sigmoid activation function was used in both FCNs to generate the contin-
uous values in the range of 0 to 1, we multiply by 255 to produce continuous values in
the range of 0 to 255 for the pixelwise label image. Hence, a filter is necessary to classify
pixels into two groups, the WC pixels and non-WC pixels, as the binary segmentation
results. In this research, for both FCNs, all pixels with a value >127 were updated to 255
to indicate WC; otherwise, they were replaced with 0 to represent non-WC objects. In
addition, previous research showed a filter that replaces a pixel prediction that falls in
the range of (class-label−15, class-label+15), and the defined value of each class label can
yield adequate performance in multiclass segmentation tasks [48]. Thus, the following
alternative option was tested for the encoder-decoder: all pixels within the [0, 15] range
were updated to 0 for non-WC, and all values within the [240, 255] range were updated to
255 for WC.
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Both trained FCNs were used to segment the five large-sized RGB images in Figure 7
using the disassembling and assembling algorithm, and the evaluation results of pixel
accuracy, WC intersection over union (IoU), and Non-WC IoU values are compared in
Table 3 for both training and testing data sets. By updating all pixel predictions with values
>127 to 255 to indicate WC objects and replacing others with 0 to represent non-WC objects,
the two FCN models generated similar results of IoU performance in the training data
sets of wc3 and wc2 and the testing data set of soil1. In addition, Table 3 shows that the
maximum WC IoU difference value between the U-Net and the encoder-decoder is only
0.0473 for training data set wc1 and 0.0844 for testing data set soil2. This is much better
than the alternative option, which has a WC IoU difference of 0.0612 in data set wc1, and a
difference of 0.1057 in data set soil2.

Table 3. Training and testing evaluation results.

U-Net Encoder-Decoder Encoder-Decoder (Alternative Option)

Training Testing Training Testing Training Testing

Performance wc3 wc2 wc1 soil2 soil1 wc3 wc2 wc1 soil2 soil1 wc3 wc2 wc1 soil2 soil1

Pixel Accuracy 0.9977 0.9969 0.9992 0.9886 0.9794 0.9914 0.9931 0.9954 0.9770 0.9733 0.9898 0.9892 0.9944 0.9751 0.9724
Non-WC IoU 0.9970 0.9949 0.9991 0.9872 0.9747 0.9886 0.9886 0.9950 0.9742 0.9674 0.9865 0.9826 0.9940 0.9723 0.9665

WC IoU 0.9911 0.9921 0.9898 0.9065 0.9006 0.9669 0.9824 0.9425 0.8221 0.8728 0.9601 0.9725 0.9286 0.8008 0.8646

Furthermore, the assembled large image label predictions are shown in Figure 9, where
the encoder-decoder mislabeled several WC areas are in the left side of testing data set
soil2 (Figure 9d) compared to the U-Net prediction (Figure 9c) and the ground truth label
image (Figure 7d). The mislabeled objects are plastic bags, which have a similar texture to
concrete in the image. Due to its superior accuracy, the U-Net was used for the remaining
applications. Table 3 shows that the pixel accuracy and IoUs of the training and testing data
sets are very close to 1, but these slight differences cannot be further reduced by adding
more training epochs due to the point gaps of the RGB images, which were filled with a
WC label in the manually created label images but were successfully identified as non-WC
objects in the assembled label image predictions. Moreover, the pixelwise segmentation
results of the point clouds’ perspective views and orthographic oblique views are also
shown in Figure 9e–h, where the U-Net successfully detected the WC stockpile and the
scattered WC pieces, which confirmed the effectiveness of the proposed DA.

4.3. Concrete Debris Extraction, Measurement, and Modeling

The target WC debris stockpile was placed in the center of the screen as in Figure 5
by zooming to extents, and the previously described screenshot tool collected the point
cloud’s RGB and elevation image (see Figure 10) with an orthographic top-view from
ReCap Pro, where the point display size was set at the default value of 2. The WC stockpile
has a Site width of 36.202 m (see Figure 5). The captured grayscale elevation image has
an Elevationmax of 4 m and Elevationmin of −1 m, as shown in Figure 10b. The finalized
RGB and elevation images have the dimensions of 1358 pixels in width and 886 pixels
in height, which were automatically determined in the screenshot tool by dropping all
black margins. Then, the GSD was calculated via Equation (1) as 0.026658321 m/pixel
(36.202 m/1358 pixel). In addition, the P2O tool generated the orthoimage and elevation
data shown in Figure 10c,d using the designated GSD = 0.025 m/pixel and elevation values
in the range of −0.710394 m to 3.353387 m. The generated feature images have the size
of 1448 × 944 pixels, and the Site width = GSD × Image width = 0.025 × 1448 = 36.2 m,
which is equal to the manually measured result of 36.202 m (see Figure 5).
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Consequently, the RGB image was dissembled into several 128 × 128-pixel small
patches and then processed by the trained U-Net for 128 × 128-pixel label image prediction,
and the large-sized pixelwise label image was assembled for WC stockpile extraction, as
shown in Figure 10a. Once the contour of the WC stockpile was obtained, its projected area
of 191.3 m2 and volume of 104.1 m3 were estimated using Equations (3a) and (3b). The
extraction and measurement results are annotated in Figure 11a, where the scattered thin
WC pieces and the small WC stockpile in the bottom-left were dropped by the 10,000-pixel
area filter. In addition, the U-Net-generated label image for the P2O result is shown in
Figure 10c. The major difference between Figure 10a,c is annotated and the detailed section
is shown in Figure 10c as well. This section has pavement marks and aggregate particles
mixed with thin concrete debris, and thus it is reasonable for the U-Net model to identify
this region as non-WC. Following that, the extracted WC stockpile has a projected area of
189.1 m2 and a volume of 98.9 m3 in Figure 11d, which is slightly less than the 191.3 m2

in Figure 11a. The extracted WC stockpiles have a 1.15% = (100 − 189.1/191.3 × 100)%
area difference, which is reasonable due to the U-net generating the different label images.
However, the 5% = (100 − 98.9/104.1 × 100)% volume difference is unreasonably large and
is discussed later.
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Figure 11. WC stockpile extraction: (a) point size = 2, area = 191.3 m2, volume = 104.1 m3

(red texts), (b) point size = 1, area = 188.6 m2, volume = 100.4 m3, (c) point size = 10,
area = 207.2 m2, volume = 123.6 m3, (d) GSD = 0.025 m/pixel, area = 189.1 m2, volume = 98.9 m3,
(e) GSD = 0.01 m/pixel, area = 189.8 m2, volume = 99.6 m3, and (f) GSD = 0.030 m/pixel,
area = 188.0 m2, volume = 98.6 m3.
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Additionally, the above processes were repeated to test the effect of filter size, where an
area filter of 1000 pixels was applied to extract WC debris stockpiles from another captured
and finalized RGB image with dimensions of 1357 × 886 pixels. Two WC stockpiles were
extracted and modeled in CAD and ArcGIS Online, as shown in Figure 12. The larger
one has an area of 191.2 m2 and a volume of 104.2 m3; these values are close to the results
annotated in Figure 11a with the 10,000-pixel area filter. Thus, the developed method using
photogrammetric point cloud-generated RGB and elevation images is a robust, accurate,
and effective approach for WC debris volume estimation.
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5. Discussion
5.1. P2O-Feature Image and GSD Parameter Analysis in Segmentation Performance

The performance of FCN-based image segmentation has a strong relationship with
the comprehensive level of the model training data sets. The arbitrary view segmenta-
tion results in Figure 9e–h confirm that using only orthographic views and the proposed
data augmentation (DA) strategies can yield a well-trained FCN for WC object detection.
The prepared data sets have a size of 2048 × 2048 pixels and an approximate GSD of
0.009261 m/pixel, and are available in [45]. Step (2) of DA randomly resizes training
data sets in the range of [0.5, 1.5], which should let the trained model successfully pro-
duce accurate label images for GSD in the range of 0.006174 to 0.018523 m/pixel. Since
the P2O tool can generate feature images with any designated GSD values, we tested a
GSD = 0.008 m/pixel and other GSDs from 0.010 m/pixel to 0.040 m/pixel with an interval
of 0.005 m/pixel.

The extracted WC stockpiles are shown in Figure 11d–f and have the projected areas
summarized in Figure 13a. The U-Net-generated label images for GSD = 0.008, 0.02, and
0.035 m/pixel are shown in Figure 13b–d, respectively, with the annotated difference and the
detailed section, as well. Among the different GSDs, only the GSD = 0.035 and 0.04 m/pixel
have significantly different area values compared to others. Figure 13c,d explains that the
marked section containing concrete debris is much darker than the others and close to the
aggregate particles, resulting in the U-Net failing to identify them as WC objects.
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Furthermore, Figure 11 indicates that the P2O orthoimages filled gaps on their edges
with similar textures from neighboring pixels, especially in the annotated top-left corners
of Figure 11a,d. When GSD = 0.008, 0.010, and 0.015 m/pixel, the U-Net model incorrectly
identified a piece of WC debris in the filled regions, as shown in Figure 13b, but this error
did not occur in other GSDs. The filled regions in the P2O feature image can be removed by
comparing them with the original point cloud. Therefore, the proposed DA can enable the
FCN to perform accurate pixelwise segmentation on P2O orthoimages with GSD = 0.008 to
0.03 m/pixel (0.86 to 3.24 times of 0.009261 m/pixel), which enhanced the designed the
GSD range of 2/3 to 2 times of the training data sets.

5.2. Screenshot Feature Image and Point Cloud Display Size Parameter Analysis in Measurement
Performance

The results in Figure 11a,d show that the extracted WC stockpiles for the screenshot
feature images and P2O feature images have a 1.15% area difference and a 5% volume
difference. Based on Equation (3b), the average heights of the WC stockpiles are different
between the two sets of feature images, as well. The elevation values for the P2O feature
images are directly obtained from the original point cloud, which are the ground truth
values. The measured WC stockpiles’ average height is 0.523 m for GSD = 0.020, 0.025, and
0.030 m/pixel. It is 3.86% = (100 − 0.523/0.544 × 100)% or 0.021 m less than the screenshot
feature images with an average height of 0.544 m. According to Equation (2), the elevations
of screenshot feature images are converted from the 8-bit grayscale images. As shown in
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Figure 10a, by setting Elevationmin = −1 m and Elevationmax = 4 m, the interval of adjacent
integers between 0 and 255 represents an elevation change of 0.0196 m, which means the
elevation values have a precision of ±0.0196 m. Thus, a majority (93.33%) of elevation
differences result from the grayscale elevation images, and we further investigated whether
or not the point size would result in the additional 6.67% (0.0014 m) elevation difference.

The ReCap Pro software has a default point cloud display size of 2, and supports
display sizes in the range of 1 to 10. The sensitivity analysis of point cloud display size was
conducted, and the results are shown in Figure 14, where the area, average height, and
volume of the extracted WC stockpiles have a positive relationship and are sensitive to point
sizes in the range of 1 to 10. Reasons were investigated and analyzed as follows: (1) when
the point size is small, the scattered thin WC pieces were dropped by the 10,000-pixel area
filter, e.g., the annotated WC pieces in Figure 11a,b; (2) when the point size is large, e.g., point
size of 10 in Figure 11c, the gaps in the RGB image and elevation image were filled, but this
also resulted in WC points invading non-WC regions when compared to smaller point size
values, e.g., point size of 1 shown in Figure 11b. As a result, the U-Net-generated pixelwise
label image detected more WC pixels and resulted in the projected area of the extracted WC
stockpile increasing by 18.6 m2 (or 9.86%) when comparing point sizes 1 and 10.
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Figure 14. Point cloud display size sensitivity analysis: (a) plot of area vs point size, (b) plot of volume
vs point size, (c) plot of average height vs point size, and (d) detailed results (* indicates the predictions).

Additionally, the average height of the WC stockpile has a difference of 0.064 m (or
12.01%) between point sizes 10 and 1. As a result, the estimated volume of the WC stockpile
has a difference of 23.2 m3 (or 23.11%). After eliminating the impact of point size by setting
the point size as zero, the estimated area, volume, and average height from the linear
regressions are 187.63 m2, 98.94 m3, and 0.5287 m, which are close to the results of 189.10 m2,
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98.90 m3, and 0.523 m from the P2O feature image with GSD = 0.025 m/pixel. Therefore, in
future applications, when using the developed screenshot tool with ReCap Pro, setting the
point cloud display size at the default value of 2 in ReCap Pro is recommended for C&D
debris object detection when the collected point clouds are sufficiently dense; otherwise,
the Pointcloud2Orthoimage tool is recommended for C&D debris object measurement.

5.3. Benefits for Construction Waste Management Practice

As shown in Figure 1, most C&D debris illegal dumping sites contain hazards for
in-person investigation. Using a drone and photogrammetry to obtain the 3D reality data
of the C&D debris stockpiles is a convenient and safe approach for field investigation.
The field investigator can first fly a drone at a higher altitude to have the overall view
of an illegal dumping site, then fly the drone at a lower altitude to capture the detailed
images (both top and side views) for SfM photogrammetry to generate 3D point clouds for
the illegal dumping site. Following that, the developed method can provide quantitative
analyses of occupied land area and debris volume in order to penalize the illegal dumping
of C&D debris. In detail, the deep learning-based image segmentation method allows
automated detection of C&D debris and the projected area measurement; the point cloud-
generated elevation data make volume calculation feasible for the C&D debris stockpiles
detected from the point cloud-generated RGB orthoimage.

Since construction wastes’ quantities are known, moving and cleaning tasks are easy
to plan and optimize, such as determining equipment cycle time and production rate, and
deciding the optimal number of trucks. Moreover, if the city government has proposed
penalties for illegal dumping of C&D waste with unit penalty prices, then this quantitative
information can be used for calculating the total fines for illegal dumping of C&D waste
and will help the government to investigate the party responsible for the illegal dumping
of C&D waste and more fairly impose penalties on illegal dumping activity. Additionally,
at construction sites or demolition jobsites, different categories of C&D materials can be
accurately detected from a single point cloud-generated RGB orthoimage via a single FCN
or separate specialized FCNs; the hazardous waste and recycled C&D materials can then
be further classified. As a result, through improved categorization, reasonable C&D waste
treatment plans can be proposed for different C&D materials, such as backfilling muck at
other construction sites and recycling concrete debris as coarse and fine aggregates.

Furthermore, the developed method in this study provides geographic information
relating to C&D debris stockpiles to support the government’s C&D waste intelligent moni-
toring and information management. Using drones, LiDAR, and deep learning technologies
can allow investigators to automatically obtain the volume data and as-built models of
C&D waste generated at construction sites or demolition jobsites, and the stockpiled C&D
waste at landfill sites or illegal dumping sites. By importing and maintaining the quanti-
tative information in the construction waste intelligent information management system,
the city government and related departments can assess the stacking, transportation, and
treatment status of C&D waste within its jurisdiction in real-time [51,52]. Moreover, the
enhanced construction waste intelligent information management system (Figure 2) can
provide useful information for C&D material recycling firms in lean production since the
C&D debris inventory is accessible from the information system, overcome barriers to
reverse logistics in C&D waste [53], as well as reduce the transportation costs by using
C&D wastes’ GIS information for route optimization.

5.4. Limitations and Recommendations

This research did not evaluate the accuracy of the photogrammetry results and as-
sumed they are correct. Previous studies indicated that the measurement performance
of photogrammetry with camera drones has a 5 cm error in both horizontal and vertical
coordinates [16,31,32]. Future research could lay out several ground control points and
check points to enhance the accuracy of photogrammetry. For example, a drone landing
pad of known size (e.g., 75 cm) can be placed next to the C&D debris; then, the landing



Drones 2022, 6, 279 18 of 21

pad will be present in the point cloud-generated orthoimage and can be detected via an
additional FCN model. As a result, the actual GSD of the feature images can then be
determined via the ratio of the landing pad diameter in meters to the landing pad diameter
in pixel units. Furthermore, we did not evaluate the accuracy of the results of automatic
volume calculations against other traditional surveying methods such as total stations
and GPS devices. Future research is recommended in such comparisons to determine the
accuracy of drone-based photogrammetry volume calculations.

Additionally, the developed method can process both photogrammetric point clouds
and laser scanning point clouds automatically. For example, mobile devices, i.e., iPad Pro
and iPhone Pro with LiDAR sensors, could be used to quickly scan C&D debris stockpiles.
Then, the developed P2O tool can automatically convert a 3D point cloud file to a 2D
feature image of orthoimage and elevation data files, such as the examples in [45]. Any
preferred GSD value, e.g., 0.010 m/pixel, can then be used to generate the feature images.
As the image frame is not limited by a screenshot, any scanned large-sized C&D landfill
and dumping site can be presented in a high-resolution image. In addition, the step of
converting the elevation range to the grayscale value range [0, 255] can be skipped because
the elevation information can be directly accessed at each point. Bypassing this step also
eliminates the possible loss of elevation data precision that might occur in this step.

Furthermore, the designed conventional encoder-decoder can be trained with label
images that contain multiple categories of C&D materials; the pixelwise segmentation
results generated by the conventional encoder-decoder will then assign the corresponding
labels to the different C&D debris stockpiles, like the example in [45]. The U-Net can also be
applied to detect multiple categories of C&D materials, with two potential approaches: (1)
training separate U-Nets for different C&D material detections, as U-Net has the advantage
of requiring fewer training data samples to develop a well-trained model; and (2) modifying
U-Net to support multiple object detection by replacing the Sigmoid activation function
with the SoftMax activation function in the end layer. However, for the latter option, label
image one-hot encoding is required, and then a powerful workstation with more memory
is required for loading the one-hot labels. Thus, future applications should prepare the
training data sets and select the FCN models depending on the task’s requirements.

6. Conclusions

The purpose of this research was to develop a time- and cost-efficient method for
construction waste management at construction and demolition jobsites, landfill sites,
and illegal dumping sites, using drones and camera-based C&D debris scanning, SfM
photogrammetry-based C&D debris 3D reconstruction, FCN image segmentation-based
C&D debris extraction and measurement, as well as ArcGIS-based C&D debris information
management with as-built 2D CAD drawings and 3D point clouds (see Figure 3). The main
findings of the experiments and parameter analysis are summarized as follows:

(1) Scanning C&D stockpiles with a low-cost, ready-to-fly consumer drone, e.g., DJI
Mavic 2 Pro (USD 1599), to obtain C&D debris stockpiles’ top-view and side-view images
can be effectively used with the SfM photogrammetry approach to generate dense 3D point
clouds for C&D debris area.

(2) Using the Pointcloud2Orthoimage tool can convert 3D point clouds into 2D feature
images of RGB orthoimage and elevation data for automatic, robust, and accurate C&D debris
object measurement. Both the light convolutional encoder-decoder network (Table 2) and the
U-Net can be effectively trained for C&D debris detection with relatively few data sets of
images and label images through the data augmentation strategies. In this study, the U-Net
performed better, with a concrete debris IoU value of 0.9006 in testing data sets (see Table 3).

The method developed in this study provides quantitative and geographic informa-
tion to support city governments and the related departments in C&D debris intelligent
information management (see Figure 2).
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18. Kavaliauskas, P.; Židanavičius, D.; Jurelionis, A. Geometric Accuracy of 3D Reality Mesh Utilization for BIM-Based Earthwork
Quantity Estimation Workflows. ISPRS Int. J. Geo-Inf. 2021, 10, 399. [CrossRef]

19. Elkhrachy, I. Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alex. Eng. J. 2021, 60,
5579–5590. [CrossRef]

20. Jiang, Y.; Bai, Y. Determination of Construction Site Elevations Using Drone Technology. In Proceedings of the Construction
Research Congress 2020, Tempe, Arizona, 8–10 March 2020; American Society of Civil Engineers: Reston, VA, USA, 2020;
pp. 296–305.

21. Han, S.; Jiang, Y. Construction Site Top-View Generation Using Drone Imagery: The Automatic Stitching Algorithm Design and
Application. In Proceedings of the The 12th International Conference on Construction in the 21st Century (CITC-12), Amman,
Jordan, 16–19 May 2022; pp. 326–334.

https://www.cembureau.eu/media/m2ugw54y/cembureau-2020-activity-report.pdf
https://www.cembureau.eu/media/m2ugw54y/cembureau-2020-activity-report.pdf
https://cembureau.eu/media/clkdda45/activity-report-2019.pdf
http://doi.org/10.1061/(ASCE)MT.1943-5533.0001043
http://doi.org/10.21809/rilemtechlett.2016.3
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation
http://doi.org/10.1016/j.conbuildmat.2018.07.086
http://doi.org/10.1016/j.conbuildmat.2017.01.055
http://doi.org/10.1016/j.wasman.2019.05.049
https://www.epa.gov/smm/sustainable-management-construction-and-demolition-materials
http://www.sz.gov.cn/cn/xxgk/zfxxgj/zcfg/szsfg/content/post_8201973.html
http://www.sz.gov.cn/cn/xxgk/zfxxgj/zcfg/szsfg/content/post_8201973.html
http://doi.org/10.1080/13658810802112128
http://doi.org/10.1080/01431160701311317
http://doi.org/10.1007/s10661-014-3995-z
http://doi.org/10.1016/j.conbuildmat.2019.05.028
http://doi.org/10.1061/(ASCE)CO.1943-7862.0002067
http://doi.org/10.1080/13467581.2020.1869023
http://doi.org/10.3390/ijgi10060399
http://doi.org/10.1016/j.aej.2021.04.011


Drones 2022, 6, 279 20 of 21

22. Jiang, Y.; Han, S.; Bai, Y. Building and Infrastructure Defect Detection and Visualization Using Drone and Deep Learning
Technologies. J. Perform. Constr. Facil. 2021, 35, 04021092. [CrossRef]

23. Seo, J.; Duque, L.; Wacker, J. Drone-Enabled Bridge Inspection Methodology and Application. Autom. Constr. 2018, 94, 112–126.
[CrossRef]

24. Chen, K.; Reichard, G.; Akanmu, A.; Xu, X. Geo-Registering UAV-Captured Close-Range Images to GIS-Based Spatial Model for
Building Façade Inspections. Autom. Constr. 2021, 122, 103503. [CrossRef]

25. Chen, K.; Reichard, G.; Xu, X.; Akanmu, A. Automated Crack Segmentation in Close-Range Building Façade Inspection Images
Using Deep Learning Techniques. J. Build. Eng. 2021, 43, 102913. [CrossRef]

26. Yeh, C.C.; Chang, Y.L.; Alkhaleefah, M.; Hsu, P.H.; Eng, W.; Koo, V.C.; Huang, B.; Chang, L. YOLOv3-Based Matching Approach
for Roof Region Detection from Drone Images. Remote Sens. 2021, 13, 127. [CrossRef]

27. Jiang, Y.; Han, S.; Bai, Y. Scan4Façade: Automated As-Is Façade Modeling of Historic High-Rise Buildings Using Drones and AI. J.
Archit. Eng. 2022, 28, 04022031. [CrossRef]

28. Mishra, B.; Garg, D.; Narang, P.; Mishra, V. Drone-Surveillance for Search and Rescue in Natural Disaster. Comput. Commun. 2020,
156, 1–10. [CrossRef]

29. Kyrkou, C.; Theocharides, T. EmergencyNet: Efficient Aerial Image Classification for Drone-Based Emergency Monitoring Using
Atrous Convolutional Feature Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1687–1699. [CrossRef]

30. Kyrkou, C.; Theocharides, T. Deep-Learning-Based Aerial Image Classification for Emergency Response Applications Using
Unmanned Aerial Vehicles. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 517–525.

31. Takahashi, N.; Wakutsu, R.; Kato, T.; Wakaizumi, T.; Ooishi, T.; Matsuoka, R. Experiment on UAV Photogrammetry and Terrestrial
Laser Scanning for ICT-Integrated Construction. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W6,
371–377. [CrossRef]

32. Han, S.; Jiang, Y.; Bai, Y. Fast-PGMED: Fast and Dense Elevation Determination for Earthwork Using Drone and Deep Learning. J.
Constr. Eng. Manag. 2022, 148, 04022008. [CrossRef]

33. Haur, C.J.; Kuo, L.S.; Fu, C.P.; Hsu, Y.L.; Heng, C. Da Feasibility Study on UAV-Assisted Construction Surplus Soil Tracking
Control and Management Technique. IOP Conf. Ser. Mater. Sci. Eng. 2018, 301, 012145. [CrossRef]

34. Zhang, Q.; Zhang, X.; Mu, X.; Wang, Z.; Tian, R.; Wang, X.; Liu, X. Recyclable Waste Image Recognition Based on Deep Learning.
Resour. Conserv. Recycl. 2021, 171, 105636. [CrossRef]

35. Davis, P.; Aziz, F.; Newaz, M.T.; Sher, W.; Simon, L. The Classification of Construction Waste Material Using a Deep Convolutional
Neural Network. Autom. Constr. 2021, 122, 103481. [CrossRef]

36. Chen, J.; Lu, W.; Xue, F. “Looking beneath the Surface”: A Visual-Physical Feature Hybrid Approach for Unattended Gauging of
Construction Waste Composition. J. Environ. Manag. 2021, 286, 112233. [CrossRef]

37. Wang, Z.; Li, H.; Zhang, X. Construction Waste Recycling Robot for Nails and Screws: Computer Vision Technology and Neural
Network Approach. Autom. Constr. 2019, 97, 220–228. [CrossRef]

38. Zhang, S.; Chen, Y.; Yang, Z.; Gong, H. Computer Vision Based Two-Stage Waste Recognition-Retrieval Algorithm for Waste
Classification. Resour. Conserv. Recycl. 2021, 169, 105543. [CrossRef]

39. Jiang, Y.; Han, S.; Bai, Y. Development of a Pavement Evaluation Tool Using Aerial Imagery and Deep Learning. J. Transp. Eng.
Part B Pavements 2021, 147, 04021027. [CrossRef]

40. Jiang, Y.; Bai, Y.; Han, S. Determining Ground Elevations Covered by Vegetation on Construction Sites Using Drone-Based
Orthoimage and Convolutional Neural Network. J. Comput. Civ. Eng. 2020, 34, 04020049. [CrossRef]

41. Jiang, Y. Remote Sensing and Neural Network-Driven Pavement Evaluation: A Review. In Proceedings of the 12th International
Conference on Construction in the 21st Century (CITC-12), Amman, Jordan, 16–19 May 2022; pp. 335–345.

42. Jiang, Y.; Han, S.; Li, D.; Bai, Y.; Wang, M. Automatic Concrete Sidewalk Deficiency Detection and Mapping with Deep Learning.
Expert Syst. Appl. 2022, 207, 117980. [CrossRef]

43. Autodesk 3D View. Available online: https://help.autodesk.com/view/RECAP/ENU/?guid=Reality_Capture_View_and_
Navigate_Point_Cloud_Color_Settings_3D_View_html (accessed on 22 June 2021).

44. OpenCV Smoothing Images. Available online: https://docs.opencv.org/3.4/dc/dd3/tutorial_gausian_median_blur_bilateral_
filter.html (accessed on 22 June 2021).

45. Jiang, Y. Demo of Concrete Debris Measurement and Mapping. Available online: https://www.yuhanjiang.com/research/
UCPD/CDWM/CD (accessed on 27 August 2022).

46. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham,
Switzerland, 2015; Volume 9351, pp. 234–241. ISBN 9783319245737.

47. Zhi, X. Implementation of Deep Learning Framework—Unet, Using Keras. Available online: https://github.com/zhixuhao/unet
(accessed on 1 July 2020).

48. Jiang, Y.; Han, S.; Bai, Y. Construction Site Segmentation Using Drone-Based Ortho-Image and Convolutional Encoder-Decoder
Network Model. In Proceedings of the Construction Research Congress 2022, Arlington, VA, USA, 7–12 March 2022; American
Society of Civil Engineers: Reston, VA, USA, 2022; pp. 1096–1105.

http://doi.org/10.1061/(ASCE)CF.1943-5509.0001652
http://doi.org/10.1016/j.autcon.2018.06.006
http://doi.org/10.1016/j.autcon.2020.103503
http://doi.org/10.1016/j.jobe.2021.102913
http://doi.org/10.3390/rs13010127
http://doi.org/10.1061/(ASCE)AE.1943-5568.0000564
http://doi.org/10.1016/j.comcom.2020.03.012
http://doi.org/10.1109/JSTARS.2020.2969809
http://doi.org/10.5194/isprs-archives-XLII-2-W6-371-2017
http://doi.org/10.1061/(ASCE)CO.1943-7862.0002256
http://doi.org/10.1088/1757-899X/301/1/012145
http://doi.org/10.1016/j.resconrec.2021.105636
http://doi.org/10.1016/j.autcon.2020.103481
http://doi.org/10.1016/j.jenvman.2021.112233
http://doi.org/10.1016/j.autcon.2018.11.009
http://doi.org/10.1016/j.resconrec.2021.105543
http://doi.org/10.1061/JPEODX.0000282
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000930
http://doi.org/10.1016/j.eswa.2022.117980
https://help.autodesk.com/view/RECAP/ENU/?guid=Reality_Capture_View_and_Navigate_Point_Cloud_Color_Settings_3D_View_html
https://help.autodesk.com/view/RECAP/ENU/?guid=Reality_Capture_View_and_Navigate_Point_Cloud_Color_Settings_3D_View_html
https://docs.opencv.org/3.4/dc/dd3/tutorial_gausian_median_blur_bilateral_filter.html
https://docs.opencv.org/3.4/dc/dd3/tutorial_gausian_median_blur_bilateral_filter.html
https://www.yuhanjiang.com/research/UCPD/CDWM/CD
https://www.yuhanjiang.com/research/UCPD/CDWM/CD
https://github.com/zhixuhao/unet


Drones 2022, 6, 279 21 of 21

49. Haeberli, P.; Voorhies, D. Image Processing by Interp and Extrapolation. Available online: http://www.graficaobscura.com/
interp/index.html (accessed on 28 July 2021).

50. OpenCV Contours in OpenCV. Available online: https://docs.opencv.org/3.4/d3/d05/tutorial_py_table_of_contents_contours.
html (accessed on 9 November 2020).

51. Zainun, N.Y.; Rahman, I.A.; Rothman, R.A. Mapping Of Construction Waste Illegal Dumping Using Geographical Information
System (GIS). IOP Conf. Ser. Mater. Sci. Eng. 2016, 160, 012049. [CrossRef]

52. Wu, H.; Wang, J.; Duan, H.; Ouyang, L.; Huang, W.; Zuo, J. An Innovative Approach to Managing Demolition Waste via GIS
(Geographic Information System): A Case Study in Shenzhen City, China. J. Clean. Prod. 2016, 112, 494–503. [CrossRef]

53. Correia, J.M.F.; de Oliveira Neto, G.C.; Leite, R.R.; da Silva, D. Plan to Overcome Barriers to Reverse Logistics in Construction and
Demolition Waste: Survey of the Construction Industry. J. Constr. Eng. Manag. 2021, 147, 04020172. [CrossRef]

http://www.graficaobscura.com/interp/index.html
http://www.graficaobscura.com/interp/index.html
https://docs.opencv.org/3.4/d3/d05/tutorial_py_table_of_contents_contours.html
https://docs.opencv.org/3.4/d3/d05/tutorial_py_table_of_contents_contours.html
http://doi.org/10.1088/1757-899X/160/1/012049
http://doi.org/10.1016/j.jclepro.2015.08.096
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001966

	Introduction 
	Background 
	Construction and Demolition Debris Management 
	Literature Review 

	System Design and Development 
	System Overview 
	Aerial Image Collection and Photogrammetry 
	Point Cloud Feature Image Generation 
	Pixelwise Segmentation Models and Label Image Generation 
	C&D Debris Extraction, Measurement, Modeling, and Mapping 

	Experiments and Results 
	Experimental Site and Data Set Preparation 
	Image Segmentation Model Training, Testing and Comparison 
	Model Training 
	Model Testing 

	Concrete Debris Extraction, Measurement, and Modeling 

	Discussion 
	P2O-Feature Image and GSD Parameter Analysis in Segmentation Performance 
	Screenshot Feature Image and Point Cloud Display Size Parameter Analysis in Measurement Performance 
	Benefits for Construction Waste Management Practice 
	Limitations and Recommendations 

	Conclusions 
	References

