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Abstract: Crop yield prediction before the harvest is crucial for food security, grain trade, and policy
making. Previously, several machine learning methods have been applied to predict crop yield using
different types of variables. In this study, we propose using the Geographically Weighted Random
Forest Regression (GWRFR) approach to improve crop yield prediction at the county level in the US
Corn Belt. We trained the GWRFR and five other popular machine learning algorithms (Multiple Linear
Regression (MLR), Partial Least Square Regression (PLSR), Support Vector Regression (SVR), Decision
Tree Regression (DTR), and Random Forest Regression (RFR)) with the following different sets of features:
(1) full length features; (2) vegetation indices; (3) gross primary production (GPP); (4) climate data; and
(5) soil data. We compared the results of the GWRFR with those of the other five models. The results
show that the GWRFR with full length features (R2 = 0.90 and RMSE = 0.764 MT/ha) outperforms other
machine learning algorithms. For individual categories of features such as GPP, vegetation indices,
climate, and soil features, the GWRFR also outperforms other models. The Moran’s I value of the
residuals generated by GWRFR is smaller than that of other models, which shows that GWRFR can
better address the spatial non-stationarity issue. The proposed method in this article can also be
potentially used to improve yield prediction for other types of crops in other regions.

Keywords: corn yield; remote sensing; machine learning; random forests; spatial autocorrelation

1. Introduction

Corn, as an important crop in the world, is mostly used for human food, ethanol
production, and livestock feed [1]. The United States (US) is the largest corn producer
and accounts for more than 36% of global corn production [2]. The majority of the corn
produced by the US is from the Corn Belt, which consists of 12 Midwestern states where
corn is usually grown in rotation with soybean [3]. The changing climate poses a threat
to crop yield and the agricultural systems [4]. Additionally, the rapid growth of the
global population also poses a challenge for global food security [5]. An accurate and
timely yield estimation plays a significant role in agricultural economics and global food
security because it can provide more information to different stakeholders such as farm
managers, crop specialists, and governments and facilitate their decision making (e.g.,
importing/exporting grains, planting, irrigation, fertilizing, and harvesting) [6–8].

Crop yield prediction has attracted significant research attention [6,9–29] and can date
back to 1964 [30]. There are two primary categories of crop yield models: physical models
and statistical models [31]. Physical models use physiological conditions of crops and
predict yield by incorporating the underlying processes such crop health, soil nutrients,
and water availability [24]. Physical models usually provide better estimates of crop yield
if the underlying crop conditions provided are accurate; however, these models are not
widely used due to their complexity [32]. Physical models require fine-grained data, which
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limits the use of these models in large-scale applications, since it is difficult to compile the
required detailed data for large study areas [31]. On the other hand, statistical models are
widely used due to their simplicity and good performance [12,33,34]. Crop yield is affected
by several factors such as genotype [17], weather [33], water management practices [35],
soil moisture [14], and soil nutrients [36]. We can use these factors as the input to predict
crop yield. In the early stages, soil-based parameters were mainly used to predict crop
yield at the field level since other datasets were not available. With the development of data
acquisition technologies, remote sensing and climate data have been widely used for crop
yield prediction [28]. Recently, a significant amount of research has been conducted on crop
yield prediction [11,15,19,20,25,31,34,37,38]. Different studies have used different datasets
such climatic data [33], remote sensing data [21], and other biophysical data [23] to predict
crop yield. Climatic variables such as temperature, precipitation, evapotranspiration, and
vapor pressure deficit are related to crop growth as they can affect crop yield prediction [39].

Remote sensing data can provide information on both biotic and abiotic factors,
such as temperature, precipitation, soil moisture, vegetation health, and water stress.
One advantage of remote sensing data is their good availability. Early research [22] has
demonstrated the effectiveness of remote sensing data in crop yield predictions. Since
then, many studies [9,31,40] have been conducted on using satellite-derived information
for crop monitoring and yield prediction. Remote sensing data can capture several crop
characteristics such as crop health [41], diseases [42], and primary productivity [43]. The
use of vegetation indices (VIs) derived from remote sensing data are more popular in crop
yield prediction [44]. Compared with raw reflectance values, VIs are more sensitive to
vegetation conditions and can better capture the changes in vegetation conditions such as
crop growth, health, or stress [23]. VIs such as the normalized difference vegetation index
(NDVI), enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), green
chlorophyll index (GCI), and normalized difference water index (NDWI) are generally
used to characterize vegetation conditions and have recently been used to study crop
yield [11,13,31,37]. NDVI and EVI have been calculated and used as independent variables
in combination with several other variables such as climate and soil data to predict crop
yield in different areas [11,31]. Another factor recently used for estimating crop yield is
primary productivity [9], which can be defined as the amount of carbon taken by plants to
create new biomass [45].

There are a variety of machine learning models that can be used to predict crop
yield [16]. These input parameters of machine learning models include climate data
(temperature, precipitation, evapotranspiration, and vapor pressure), soil conditions (soil
organic carbon, soil moisture, and soil temperature), and management factors (planting
pattern, sowing, and harvesting dates) [25]. Feng, Wang, Zhang and Du [11] developed a
spatio-temporal neural network model that uses remote sensing, soil, and climate data to
predict winter wheat yield. They also compared their results with those of other benchmark
models such as support vector regression, and the results show that spatio-temporal models
can improve winter wheat yield prediction by 2.61% in terms of mean absolute percentage
error (MAPE). Ma, Zhang, Kang and Özdoğan [31] used Bayesian neural networks (BNN)
to predict corn yield in the US Corn Belt and achieved a coefficient of determination (R2)
of 0.77. The results of BNN were compared with those from other models, and their
results show that BNN can reduce the overall error by 6 to 23%. Shahhosseini, Hu and
Archontoulis [10] used machine learning ensembles to predict corn yield in three US states:
Illinois, Iowa, and Indiana. A wide range of predictors were used to carry out this study,
and their method can improve corn yield prediction by approximately 5%. Another study
based on the coupling of physical models with machine learning models reported that the
inclusion of machine learning algorithms can improve the accuracy of the models [38]. Sun,
Di, Sun, Shen and Lai [40] used convolution neural networks (CNN) to predict county-level
soybean yield (R2 = 0.77). Their CNN model achieved a very high accuracy (R2 = 0.77).
Previous studies have used several different predictors at different spatio-temporal scales
to predict corn yield [11,13,27,31,33,46]. These studies also employed different machine
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learning models that have improved performance when compared with other models
in terms of R2, mean squared error (MSE), and mean absolute error (MAE) [25,46]. The
improved results can be attributed to different factors such as the complexity of models, the
number of independent variables, and the scale of study [28,32]. However, as mentioned
earlier, it can be difficult to collect data for a large number of features in a large study area.
Moreover, using a large number of predictors in machine learning models can possibly
increase uncertainty as machine learning models are prone to overfitting issues [38,39]. In
this context, selecting a set of key features is important in constructing crop yield prediction
models [47]. Relevant research needs to be conducted to derive the best set of predictors for
the machine learning models for crop yield prediction. Additionally, crop yield prediction
has a spatial nature, and spatial factors play a significant role in crop yield modeling [48].
However, the spatial variations in crop yield have rarely been considered in previous
studies. Addressing spatial problems with non-spatial methods can introduce uncertainty
in the results. The models trained without considering geographic locations of samples
sometimes cannot capture the local effects [6,23,28,31,37]. Traditionally, geographically
weighted regression (GWR) [49] is used to model spatial problems; however, due to its
linear nature, the model cannot perform very well if the underlying relationships are
non-linear [50].

This study aims to address the two above-mentioned issues. We propose to employ
the geographically weighted random forest (GWRFR) model to predict crop yield based on
different feature sets. GWRFR has two advantages over other models: (1) it has a non-linear
nature due to the underlying random forest algorithm, and (2) the spatial nature of the
GWRFR can explicitly model spatial problems [51]. To the best of our knowledge, little
research has been conducted on the use of GWRFR in corn yield prediction. Moreover, a
systematic comparison of the predicted yield derived from GWRFR with those derived
from other non-spatial algorithms has not been reported in previous research. This study
also employs a wide range of predictors to derive the best set of features to predict crop
yield, with an emphasis on reducing the number of features. Specifically, we use the follow-
ing five sets of features to study the impacts of feature selection on model performance:
(1) full length features; (2) vegetation indices; (3) gross primary production (GPP);
(4) climate data; and (5) soil data. Lastly, the usage of GPP as a predictor for crop yield
with machine learning has rarely been studied. We use GWRFR to predict county-level
corn yield with different sets of features and compare the results with the following five
popular machine learning algorithms: multiple linear regression (MLR), partial least square
regression (PLSR), support vector regression (SVR), decision tree regression (DTR), and
random forests regression (RFR) to address the following research questions:

(1) Can GWRFR derive more accurate results in corn yield prediction in the US Corn Belt
than other machine learning models?

(2) How does feature selection affect the performance of machine learning models in
county-level corn yield prediction?

The remainder of this article is organized as follows. Section 2 includes the details
about the study area, data, and methods used in this research. Section 3 presents the results,
and Section 4 provides a further discussion on the results. The conclusions of this study are
included in Section 5.

2. Materials and Methods
2.1. Study Area

This study was conducted in the US Corn Belt, which includes the following 12 Midwestern
states: North Dakota (ND), South Dakota (SD), Nebraska (NE), Kansas (KS), Minnesota
(MN), Iowa (IA), Missouri (MO), Arkansas (AR), Wisconsin (WI), Illinois (IL), Indiana
(IN), and Ohio (OH) [2,52]. The US Corn Belt accounts for approximately 75% of corn
production in the US [53] and 36% of global corn production [52]. The US accounts for
approximately 15% of global corn export [1]. The corn acreage in the study area in 2020 is
shown in Figure 1.
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Figure 1. The map of the study area (Corn acreage by county in 2020).

2.2. Datasets

The datasets used in this study are listed in Table 1. The details of each dataset are
presented in subsequent sections.

Table 1. The datasets used in the study.

Data Variables Unit Source Spatial Resolution

Satellite data [54] Normalized difference vegetation index (NDVI) - MODIS 250 m
Enhanced vegetation index (EVI) - MODIS 250 m

Primary production [55] Gross primary production (GPP) kg C/m2 MODIS 500 m
Soil [56] Available water content (AWC) cm gSSURGO 10 m

Available water storage (AWS) mm gSSURGO 10 m
Cation exchange capacity (CEC) meq/100 g gSSURGO 10 m

Bulk density g/cm3 gSSURGO 10 m
Percent clay Percent gSSURGO 10 m
Percent sand Percent gSSURGO 10 m
Field capacity cm/cm gSSURGO 10 m

Organic carbon g C/m2 gSSURGO 10 m
pH - gSSURGO 10 m

Saturated hydraulic conductivity µm/sec gSSURGO 10 m
Wilting point cm/cm gSSURGO 10 m

Climate [57] Precipitation mm PRISM 4 km
Minimum temperature ◦C PRISM 4 km
Maximum temperature ◦C PRISM 4 km

Mean temperature ◦C PRISM 4 km
Minimum vapor pressure deficit hPa PRISM 4 km
Maximum vapor pressure deficit hPa PRISM 4 km

Mean dew point temperature ◦C PRISM 4 km

MODIS: Moderate resolution imaging spectroradiometer. gSSURGO: Gridded soil survey geographic database.
PRISM: Parameter-elevation regressions on independent slopes model.
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2.2.1. Corn Yield Data

The corn yield data were collected from the National Agricultural Statistics Service
Information (NASS), United States Department of Agriculture (USDA) [53]. The yield
data were aggregated at the county level and are available to the public on their website
(https://quickstats.nass.usda.gov, accessed on 18 November 2021). The county-level yield
data have been used by many studies as the government provides most of the datasets
at the county level [25,31,34,40]. County-level data from 2006 to 2020 were collected and
mapped for each year using the geographic boundaries of the counties obtained from the
US Census Topologically Integrated Geographic Encoding and Referencing (TIGER) project.

2.2.2. Cropland Data Layer

Cropland data layer (CDL) is a dataset published by USDA annually to provide
information about croplands in the conterminous US (CONUS) [58]. CDL was initially
available for several states, and it has covered the whole CONUS since 2008. CDL is
available as a single GeoTIFF raster at a solution of 30 m and can be downloaded or used
directly in the Google Earth engine (GEE) [59]. In this study, CDL was used to eliminate the
pixels that are not corn to reduce interference of other crops. This is because the data for all
variables are aggregated at the county level, and each county can contain pixels that are
not corn. CDL was used as a mask for our study area so that only the data falling within
corn fields are used.

2.2.3. Vegetation Indices

A wide range of remote sensing data are available to monitor global vegetation
conditions [60]. The use of VIs is more popular because they can better reflect vegetation
health conditions [44]. In this study, we use NDVI and EVI as the input for machine
learning models. Equations (1) and (2) depict the mathematical formulae to calculate
these two indices, respectively. NDVI characterizes the normalized difference between
red and near-infrared (NIR) bands. It is very useful since vegetation strongly reflects
NIR light and absorbs red light. The NDVI value for each pixel is between −1 and 1.
Larger positive values represent increasing green vegetation, while negative values usually
indicate nonvegetated surfaces [61,62]. EVI is another modified form of NDVI which
can better model areas with large vegetation biomass and minimize the effects of soil
and other atmospheric factors. C1 and C2 in Equation (2) represent the coefficients of
the aerosol resistance term (C1 and C2 are 6 and 7.5, respectively, for the MODIS EVI
product). In this study, we use a MODIS product [54] (NDVI and EVI), which has a spatial
resolution of 250 m and a temporal resolution of 16 days [54]. We extracted NDVI and
EVI from MOD13Q1.006 and used them because the MODIS data were consistent for our
research period.

NDVI = NIR − Red/NIR + Red (1)

EVI = 2.5 × NIR − Red
(NIR + C1 × Red − C2 × Blue + 1)

(2)

2.2.4. Soil Data

Soil and its associated properties are vital to crop growth and can affect crop yield [26].
To conduct this study, we focus on 11 soil properties including cation exchange capacity
(CEC), soil pH, soil available water content (AWC), soil available water storage (AWS), soil
bulk density, soil organic carbon (SOC), clay content, sand content, saturated hydraulic
conductivity, wilting point, and field capacity. The soil properties selected from the Soil
Survey Geographic (SSURGO) database are based on their effects on crop yield and relevant
literature [63–65]. These soil properties were derived using the 10 m gridded template
compiled from the Gridded Soil Survey Geographic (gSSURGO) database.

https://quickstats.nass.usda.gov
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2.2.5. Climate Data

The climatic variables used in this study were obtained from the Parameter eleva-
tion Relationships on Independent Slope Model (PRISM) [66]. The PRISM climate group
collected data from many stations across the CONUS and used sophisticated methods to
derive climate datasets. The PRISM data are provided at two spatial resolutions: 4 km and
800 m [57]. The 4 km PRISM data are available to the public. The climatic variables used
in this study include precipitation, maximum temperature, minimum temperature, mean
temperature, minimum vapor pressure deficit, maximum vapor pressure deficit, and mean
dew point temperature. The climatic variables used in this study are based on previous
studies [20,24,27,28,33]. The PRISM datasets have different temporal resolutions: daily,
monthly, and yearly [67]. In this study, we utilized the daily PRISM data and aggregated
them to derive 16-day composites since time-series NDVI and EVI data have a temporal
resolution of 16 days [54].

2.3. Data Preprocessing

The datasets mentioned in Sections 2.2.1–2.2.5 have different spatial resolutions. All
of these datasets were aggregated at the county level since the yield data provided by
USDA are at the county level [40]. The datasets were filtered by including only those cells
that are classified as corn in CDL, and the rest of the cells were excluded. The time-series
predictors for remote sensing and climate data were aggregated to derive 16-day composites
using GEE, which resulted in 12 time-series datasets for each predictor in the growing
season (April to September). Eleven soil-related predictors mentioned in Section 2.2.4 were
processed using ArcGIS Pro 2.8.0 [68] because soil data are not available in GEE. The data
collected from GEE were further processed to remove missing and invalid values. The
counties with no yield data were excluded from the analysis. The final dataset includes the
data for 976 counties with a total of 12,372 records.

2.4. Methodology

In this research, we compare the results of the proposed GWRFR model with those of
five widely used machine learning methods. All predictors are standardized. To predict
corn yield in the US Corn Belt, the data were split into training and testing datasets. A
10-fold cross validation procedure is applied to tune the hyperparameters of models. For
crop yield prediction, 5-fold and 10-fold cross validation techniques are generally used;
however, for county-level corn yield prediction, 10-fold cross validation technique has
been found effective [38]. For each model, the best fit model is applied to each test year to
predict corn yield in that specific year. The R2 and RMSE for each test year are generated
and reported along with the predicted results. The details on the machine learning models
are presented below.

2.4.1. Multiple Linear Regression (MLR)

The foundation of machine learning regression is linear regression [69]. Ordinary
least squares regression (OLS) is generally used for the estimation of coefficients of the
relationship between several independent variables and the dependent variable. The
relationship between a set of independent variables and dependent variable is assumed to
be linear. If the regression process involves one independent variable, it is termed simple
linear regression; if multiple independent variables are involved, it is termed multiple
linear regression (MLR). The effect of each independent variable on the dependent variable
is denoted in form of the coefficients in Equation (3):

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε, (3)

where y represents the dependent variable, βn represents the coefficient of the independent
variable xn, and ε is the error term associated with the model.
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Linear regression is a widely used machine learning model due to its simplicity.
However, there are some potential problems associated with it. First, linear models assume
a linear relationship between the dependent variable and independent variables. This
assumption might not be valid in every case. If the relationship between dependent
variable and independent variable(s) is non-linear, linear regression models will have
poor performance. Second, it is assumed that the error terms in linear models are always
uncorrelated. If any correlation exists in the error terms, it can reduce the performance
of linear models. It is assumed that linear models have a constant variance in the error
terms (homoscedasticity), which is always not true [70]. Another major concern about
using linear models is the presence of outliers and high leveraged points in the dataset
which clearly affect the performance of linear models. Finally, it is assumed that the
independent variables in the linear models are not correlated with each other (i.e., absence
of multicollinearity in the datasets). The presence of multicollinearity in independent
variables violates this assumption and reduces the performance of linear models.

2.4.2. Partial Least Square Regression (PLSR)

PLSR is a machine learning technique that can convert a large number of correlated
predictors to a small number of uncorrelated predictors and then perform analysis on the
reduced number of uncorrelated predictors [71]. As discussed above, we assume that the
independent variables in linear regression models are not correlated with each other, and
any presence of correlation can make linear regression models unsuitable for handling data
with high dimensions and correlated independent variables. If there are more potential
predictors and a possibility of multicollinearity in predictors, it is highly likely that MLR
will have overfitting issues. In such cases, the model will have poor performance with
new data [72]. PLSR characterizes the factors which can account for more variations in
the dependent variable. PLSR is more focused on predicting the dependent variable (corn
yield in this case) as compared to understanding the underlying relationship between
independent variables (predictors) [73].

2.4.3. Support Vector Regression (SVR)

SVR is another machine learning model which is mainly used for regression prob-
lems [74]. SVR is a variation of the famous classification algorithm—support vector ma-
chines (SVM). The main difference between SVR and SVM is that SVR is used for regression
while SVM is used for classification. In classification, SVM constructs a line or hyperplane
which can divide the data into different classes. SVR gives us flexibility in terms of error
tolerance and maximizing margins [75]. In SVR, the input is initially mapped using a linear
or non-linear kernel function depending on relationship between predictors and response
variables, after which a linear model is constructed to minimize the errors of the model.

2.4.4. Random Forest Regression (RFR)

RFR is based on the decision tree algorithm [76]. The main idea behind RFR is an
ensemble of trees with each tree representing a randomly selected subset of variables and
associated samples from the dataset. Generally, compared to decision trees, the performance
of RFR is better since it creates multiple trees [77]. The results obtained from each tree are
based on a majority vote of all associated trees. It is an ensemble of several regression trees,
which is why it is sometimes called ensemble learning. The out-of-bag (OOB) performance
estimation makes it well-suited for cross-validation and assessing performance. Another
advantage of RF over other models is it performs better when data dimensions are high.

2.4.5. Geographically Weighted Random Forest Regression (GWRFR)

GWRFR is based on the traditional random forest algorithm and can handle spatial
non-stationarity [51]. GWRFR is an ensemble learning method recently developed to im-
prove non-spatial models. The main idea behind GWRFR is similar to GWR. GWRFR trains
several local models instead of training a global model. However, it includes the power
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of the random forest regression model, which increases its predictive performance due to
its non-parametric nature [50]. Linear models are influenced by outliers, and non-spatial
models cannot model spatial heterogeneity [78]. GWRFR can overcome both weaknesses.
Recently, GWRFR has been used in different applications such as socioeconomic risk fac-
tors analysis [79], type 2 diabetes prevalence analysis [80], and COVID-19 research [81].
GWRFR can be utilized to improve crop yield prediction since crop yield prediction is a
spatial problem.

2.4.6. Experimental Design

After data preparation, we divided the data into training and testing datasets. The
training dataset is used to train the model, while the testing dataset is used in model
validation. Independent variables in this study are standardized using the standard scalar.
The standard scalar rescales the distribution of the data so that the mean value becomes
0 and the standard deviation becomes 1. Feature scaling is an important step in machine
learning as it reduces the undue influence of individual variables on the model [82]. Dif-
ferent independent variables have different scales, and sometimes large values influence
models more than other values. Therefore, it is necessary to scale the independent variables
before model construction to normalize their influence on models. For selecting the best
hyperparameters for different machine learning models, a grid search with 10-fold cross
validation was used to select the best parameters [38]. Mean squared error (MSE) was used
as the criterion to select the best model. The models with the lowest MSE will be used for
final predictions and evaluations. The experimental design is illustrated in Figure 2. The
models trained in this study include MLR, PLSR, SVR, DTR, RFR, and GWRFR. We will
compare the results of GWRFR with those of the other five machine learning algorithms.
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We use (R2) and root mean squared error (RMSE) to assess model performance. The
equations of R2 and RMSE are as follows:

R2 =
∑n

i=1(yi − ŷ)2

(yi − y)2 (4)
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RMSE =

√
∑n

i=1(yi − ŷ)2

n
(5)

One way to measure to what extent a model can capture spatial heterogeneity is to
derive the spatial autocorrelation of the residuals [83]. Global Moran’s I statistics can
be used to study spatial patterns [84]. Moran’s I value usually ranges from −1 to 1.
A positive value represents positive autocorrelation, a negative value denotes negative
autocorrelation, and a value close to zero indicates spatial randomness [84]. The presence
of spatial autocorrelation in residuals suggests that the model is not able to consider the
spatial effects [85]. Highly clustered values over space can bias predictions and result
in large prediction errors [86]. We calculated spatial autocorrelation for the residuals of
different models. The Moran’s I values of errors produced by non-spatial models such as
MLR, PLSR, SVR, DTR, and RFR are compared with that of GWRFR to assess if GWRFR
can better capture the spatial variability of corn yield in the US Corn Belt. For this study,
if the Moran’s I values are closer to zero, the errors of the model are not clustered, which
means the model can incorporate the spatial relationships [11].

Data preprocessing was performed using Python and the Jupyter Notebook [87] in
Anaconda Version 3. Anaconda is a software distribution system that provides a package
management system for Python and R. NumPy and GeoPandas libraries in Python were
utilized for data preprocessing. The samples with incomplete information were eliminated
using Pandas. To implement GWRFR, the SpatialML package in R was used, as this
package was developed for spatially weighted machine learning algorithms [51]. Python
and Scikit-learn [88] were used to implement the other five machine learning models.
Scikit-learn provides a wide range of functionalities such as data standardization, model
selection, data visualization, and model implementation. Finally, to derive the R2 of
machine learning models, the r2score function in Scikit-learn was used in this research. To
calculate the RMSE of the models, a new Python function was defined and used. We used
the Matplotlib [89] and Seaborn [90] packages in Python to visualize the results of machine
learning models. Finally, the Global Moran’s I tool in ArcGIS Pro 2.8.0 was used to examine
spatial autocorrelation in residuals.

3. Results
3.1. Descriptive Statistics

The corn yield data for all counties in the study area (2006–2020) range from 3.698 to
14.048 MT/ha with a mean value of 9.63 MT/ha and a standard deviation of 1.971 MT/ha
(Table 2). The statistical distribution of the yield data is slightly negatively skewed. Table 2
also includes the descriptive statistics of the seven variables that are highly correlated with
crop yield: GPP, NDVI, EVI, precipitation, mean dew point temperature (TD), maximum
VPD, and minimum VPD. The GPP values range from 0.033 to 0.091 kg C/m2 with a mean
of 0.072. The NDVI values during the research period range from 0.23 to 0.54 with a mean
of 0.39. Figure 3 depicts the statistical distribution of corn yield in each state.

Table 2. The descriptive statistics of the seven features related to corn yield.

Yield
(MT/ha)

GPP
(kg C/m2) NDVI EVI Precipitation

(mm)
Mean TD

(◦C)
Max VPD

(hPa)
Min VPD

(hPa)

Minimum 3.698 0.033 0.23 0.33 1.54 6.31 11.98 0.34

Maximum 14.048 0.091 0.54 0.76 4.91 18.95 33.28 3..45

Mean 9.6376 0.072 0.39 0.53 3.35 12.53 18.73 1.28

SD 1.971 0.010 0.05 0.06 0.60 2.40 3.39 0.39

NDVI: Normalized difference vegetation index. EVI: Enhanced vegetation index. Mean TD: Mean dew point
temperature. VPD: Vapor pressure deficit. SD: Standard deviation.
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3.2. Model Performance with Different Sets of Input Features

In this study, the following five sets of features were used to test the performance of
GWRFR and other machine learning models: (1) full-length features; (2) NDVI and EVI;
(3) GPP; (4) climate data; and (5) soil data. We trained the six different models separately
with each set of input features and used the R2 and RMSE to evaluate model performance.
Figure 4 shows the spatial distribution of the predicted yield of (a) MLR, (b) PLSR, (c) SVR,
(d) DTR, (e) DTR, and (f) RFR using (1) full-length features, (2) VIs, (3) GPP, (4) climate data,
and (5) soil data. The overall spatial patterns of the predicted yield vary across different
models and across different feature sets. Considerable spatial variation in the predicted
yield can be observed across different models trained with soil data (a5–f5). For example,
the predicted yields derived from the MLR and PLSR models trained with soil data (a5 and
b5) differ considerably from the results of the other four models (c5–f5). Specifically, a5
and b5 have smaller yield values in the center of the study area and larger values in the
northwest of the study area compared with c5–f5.
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(4) climate data, and (5) soil data.

3.2.1. Full-Length Features

We trained all the six machine learning models with full-length features that include
NDVI and EVI, GPP, climate variables (temperature, precipitation, VPD, and mean dew
point temperature), and soil data. We present the R2 and RMSE of all six models in Figure 5.
The derived R2 ranges from 0.791 to 0.901. The R2 and RMSE of GWRFR are 0.901 and
0.764 MT/ha, respectively. The results also illustrate that GWRFR outperforms other five
models by 0.04–0.11 in terms of R2. DTR has the lowest performance (R2 = 0.743 and
RMSE = 1.231 MT/ha). GWRFR improves the yield prediction by 0.073 in terms of R2

and 0.241 MT/ha in terms of the RMSE when compared with its non-spatial version, RFR
(R2 = 0.828 and RMSE = 1.006 MT/ha). The scatterplots of the observed and predicted yield
values are also presented in Figure 5. Overall, the yield predictions by machine learning
models are more similar to the observed yield as most points follow the dotted blue line;
however, there are some under- and over-estimations in different models. Such cases are
rarely observed in GWRFR. DTR has the lowest performance when compared with other
machine learning models because the points in its scatterplot are more dispersed.
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3.2.2. Vegetation Indices

We predicted corn yield using time-series NDVI and EVI data and reported the R2

and RMSE of the models in Figure 6. The derived R2 ranges from 0.636 to 0.849. The
R2 and RMSE of GWRFR are 0.849 and 0.944 MT/ha, respectively. The results also il-
lustrate that GWRFR outperforms other models such as MLR, PLSR, SVR, DTR, and
RFR by 0.10–0.21 in terms of R2. DTR has the lowest performance (R2 = 0.636 and
RMSE = 1.466 MT/ha). GWRFR improves the yield prediction by 0.109 in terms of R2

and 0.294 MT/ha in terms of the RMSE when compared with its non-spatial version, RFR
(R2 = 0.74 and RMSE = 1.238 MT/ha). The scatterplots of the observed and predicted yield
values are presented in Figure 6. The performances of all machine learning algorithms
including GWRFR decrease in this case when compared with that of the models using
full-length features. More cases of underestimations and overestimations can be observed
in the scatterplots; however, GWRFR can still perform better than other models.
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3.2.3. Gross Primary Production

We further trained the six machine learning models using GPP data only. The time-
series GPP data were used an independent variable to predict corn yield. We report the R2

and RMSE of the models in Figure 7. The derived R2 ranges from 0.553 to 0.839. The R2

and RMSE of GWRFR are 0.839 and 0.974 MT/ha, respectively. The results also illustrate
that GWRFR outperforms other five models such as MLR, PLSR, SVR, DTR, and RFR
by 0.144–0.286 in terms of R2. MLR and PLSR have a low performance (R2 = 0.553 and
RMSE = 1.625 MT/ha). GWRFR improves yield prediction by 0.144 in terms of R2 and
0.367 MT/ha in terms of the RMSE when compared with its non-spatial version, RFR
(R2 = 0.685 and RMSE = 1.341 MT/ha). The predictive performance of all machine learning
algorithms including GWRFR is lower when compared with that of the models trained
with full length features and VIs; however, the performance of GWRFR decreases only by
0.01 in terms of R2 and 0.03 MT/ha in terms of RMSE. The scatterplots of the observed and
predicted yield values are also presented in Figure 7. As compared to previous feature sets,
more under- and over-estimations can be observed in the scatterplots; however, GWRFR
can still perform better than other models.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 7. The scatterplots of the actual yield and the predicted yield derived from (a) MLR, (b) PLSR, 
(c) SVR, (d) DTR, (e) RFR, and (f) GWRFR using only GPP data. 

3.2.4. Climate Data 
We further trained all six machine learning models using only climate-related varia-

bles. We report the R2 and RMSE of the models in Figure 8. The derived R2 ranges from 
0.572 to 0.842. The R2 and RMSE of GWRFR are 0.842 and 0.967 MT/ha, respectively. The 
results also illustrate that GWRFR outperforms other models such as MLR, PLSR, SVR, 
DTR, and RFR by 0.03–0.27 in terms of R2. Again, MLR and PLSR have poor performance 
in terms of R2 (0.572 and 0.566, respectively) and RMSE (1.589 and 1.599 MT/ha, respec-
tively). GWRFR improves the yield prediction by 0.03 in terms of R2 and 0.093 MT/ha in 
terms of the RMSE when compared with its non-spatial version, RFR (R2 = 0.809 and RMSE 
= 1.061 MT/ha). The scatterplots of the observed and predicted yield values are also pre-
sented in Figure 8. As compared to previous feature sets, more cases of underestimations 
and overestimations can be observed now in the scatterplots; however, GWRFR can still 
perform consistently better than other models. 

Figure 7. The scatterplots of the actual yield and the predicted yield derived from (a) MLR, (b) PLSR,
(c) SVR, (d) DTR, (e) RFR, and (f) GWRFR using only GPP data.

3.2.4. Climate Data

We further trained all six machine learning models using only climate-related variables.
We report the R2 and RMSE of the models in Figure 8. The derived R2 ranges from 0.572 to
0.842. The R2 and RMSE of GWRFR are 0.842 and 0.967 MT/ha, respectively. The results
also illustrate that GWRFR outperforms other models such as MLR, PLSR, SVR, DTR, and
RFR by 0.03–0.27 in terms of R2. Again, MLR and PLSR have poor performance in terms of
R2 (0.572 and 0.566, respectively) and RMSE (1.589 and 1.599 MT/ha, respectively). GWRFR
improves the yield prediction by 0.03 in terms of R2 and 0.093 MT/ha in terms of the RMSE
when compared with its non-spatial version, RFR (R2 = 0.809 and RMSE = 1.061 MT/ha).
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The scatterplots of the observed and predicted yield values are also presented in Figure 8.
As compared to previous feature sets, more cases of underestimations and overestimations
can be observed now in the scatterplots; however, GWRFR can still perform consistently
better than other models.
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3.2.5. Soil Data

Finally, we trained all six machine learning models to predict corn yield using soil
data. Figure 9 shows the R2 and RMSE of the models. The derived R2 ranges from
0.146 to 0.501. The R2 and RMSE of GWRFR are 0.501 and 1.715 MT/ha, respectively.
GWRFR again outperforms other models such as MLR, PLSR, SVR, DTR, and RFR by
0.015–0.355 in terms of R2. Again, MLR and PLSR have poor performance in terms of
R2 (0.146) and RMSE (2.245 MT/ha). GWRFR improves the yield prediction by 0.015 in
terms of R2 and by 0.0269 MT/ha in terms of RMSE when compared with its non-spatial
version RFR (R2 = 0.486 and RMSE = 1.742 MT/ha). The scatterplots of the observed and
predicted yield values are also presented in Figure 9. As compared to previous feature sets,
more under- and over-estimations can be observed in the scatterplots, and model accuracy
decreases significantly. GWRFR can still perform consistently better than other models.
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3.3. Spatial Autocorrelation in Residuals

We used Global Moran’s I to detect spatial autocorrelation in the prediction errors
of all models to test if the models capture spatial heterogeneity [91,92]. Table 3 depicts
the results of the Moran’s I analysis. In terms of spatial autocorrelation, the residuals of
PLSR and SVR model are more clustered when compared with other non-spatial machine
learning methods. However, GWRFR outperforms other models with the lowest Moran’s
I value [11,93]. This means the errors are less clustered. Figure 10 illustrates the spatial
distribution of prediction errors for all six models. The prediction errors of GWRFR are
more randomly distributed as compared to non-spatial models. Smaller predictions errors
are observed in the models trained with full-length features compared with those trained
with other sets of features.

Table 3. Moran’s I value of residuals for MLR, PLSR, SVR, DTR, RFR, and GWRFR.

Model Moran’s I Z Score p-Value

MLR 0.277 21.28 0.00
PLSR 0.295 21.34 0.00
SVR 0.295 22.60 0.00
DTR 0.277 21.38 0.00
RFR 0.269 20.61 0.00

GWRFR 0.139 10.68 0.00
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4. Discussion

This study addresses several important issues in building models for corn yield pre-
diction. Our results demonstrate that model selection plays an important role in achieving
more accurate yield predictions. We found that GWRFR performs better than other non-
spatial machine learning algorithms. Nearby samples are more important than those distant
ones in yield prediction at a specific location [51,81,85]. Our results are consistent with
other studies that compared the performance of spatially weighted methods with that of
non-spatial methods in crop yield prediction [11,29]. The Moran’s I values of residuals
show that GWRFR can better capture spatial heterogeneity than traditional non-spatial
models. Although GWRFR has a better performance than other models in county-level
corn yield prediction in this study, more research needs to be conducted to evaluate its
effectiveness in predicting the yield for other crops in other areas at different spatial scales.
The performance of SVR trained with full length features and NDVI/EVI was second best;
however, its performance gradually decreases when trained with GPP, climate data, and
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soil data. This shows that SVR can compete with GWRFR when full-length features or
linearly correlated features (NDVI/EVI) are available.

Our results also show that feature selection is also very important in corn yield
prediction. We observed the highest R2 and the lowest RMSE in the models trained with
full length features. Our findings are consistent with previous studies [28,94] as the accuracy
of machine learning models is heavily dependent on the training data. NDVI and EVI
have been widely used in crop yield prediction [44]. VIs such as NDVI and EVI can reduce
the noise in raw reflectance values [95] and provide vegetation-specific information for
predicting corn yield. Moreover, VIs can be utilized in several other ways to improve the
accuracy of machine learning models. For example, NDVI and EVI can be used to derive
phenological information and the underlying environmental factors in different growth
stages to further improve model performance [96,97]. Extreme climatic conditions can
negatively impact crop yield and limit the predictive power of models if relevant data
are not present. Furthermore, increased precipitation can have different impacts on crop
yield depending on the spatio-temporal distribution of precipitation [98]. These additional
factors affecting crop yield can only be addressed by including detailed climate data in the
model training process. The overall performance of soil data is not very well compared
with other categories of features such as VIs, GPP, and climate data. Furthermore, we found
that time-series variables such as NDVI, GPP, and climate data can help improve model
performance. This is because time-series features can better capture crop conditions in
different stages of growth. Lastly, our study also has some limitations. County-level yield
prediction involves the aggregation of yield and associated factors over a large area. Data
aggregation can result in the loss of field-level or pixel-level information. Thus, further
research needs to be conducted to examine if our findings can be used for field-level crop
yield predictions. Moreover, several management factors such as plant density and planting
dates also affect crop yield but were not included in this study. More research needs to be
conducted to further examine the impacts of these factors on crop yield prediction.

Another aspect in crop yield prediction is data availability. Since VIs and GPP datasets
are globally available and consistent in terms of spatial and temporal resolution, they
can be used to construct scalable crop yield models. This can be useful for predicting
yield in areas where data for other predictors such as soil and climate variables are not
readily available [99]. Other datasets such as land surface temperature (LST) and solar-
induced chlorophyll fluorescence (SIF) can also be used for crop yield prediction. Recent
research has shown that replacing air temperature with MODIS LST can improve corn
yield prediction [15]. Furthermore, the VI and GPP data used in this study have low spatial
resolutions. Moderate-resolution multi-sensor data such as Sentinel-2 and Landsat-8 can
also be used for yield prediction at the county level.

5. Conclusions

We investigated the performance of GWRFR in predicting corn yield at the county
level in the US Corn Belt using different sets of features in this study. Our results show
that GWRFR can outperform all other five non-spatial models in corn yield prediction
irrespective of the features used. However, the predictive power of machine learning
models varies significantly with the use of different sets of features. In addition to GWRFR,
SVR and RFR have a better performance than other linear models. The models trained
using full length features can yield better results than the same models trained using a
subset of the features. GWRFR can model the spatial heterogeneity and produces the lowest
Moran’s I value, which means GWRFR has the capability to address spatial heterogeneity
and can be potentially used to address spatial problems in other applications. Although
GWRFR outperforms other models in this study, more research needs to be conducted to
test its effectiveness in predicting yield for other types of crops or in other areas.
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