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1.08.1 Introduction

Location plays a significant role in geography and geographic information systems (GIS). Georeferencing, defined as the general
process of relating information to a geographic location, is an important concept in GIS (Hill, 2009). Geocoding, an important
type of georeferencing technique, usually refers to relating street addresses to geographic coordinates (Goldberg, 2011). A
broader definition of geocoding is not limited to address names but includes various kinds of geographic features. Geocoding
can date back to the early days of digital mapping in the 1960s when the US Census Bureau used digital map databases to match
addresses from transportation or health surveys to their corresponding census tracts or blocks (Cooke, 1998). With the rapid
development of computer technologies (especially mobile computing) in the past few years, geocoding and reverse geocoding
have become so ubiquitous that they have become a necessity in our daily life. For example, a geocoding operation is performed
when a user gives a street address as the input to locate it in Google Map, while a reverse geocoding process occurs when the user
searches nearby features with a specific geographic location. Moreover, reverse geocoding is also an indispensible functionality in
various location-based services (LBS) applications.

Address geocoding has been the primary study focus in this field for decades since residential addresses have served as an
important spatial attribute in various survey or historical record data in a variety of fields such as public health and transporta-
tion. These addresses need to be transformed to geographic locations before researchers, practitioners, or stakeholders can
perform spatial analysis over the data for decision-making or policy making. The theoretical underpinnings, primary methods,
various applications, and latest progress of address geocoding will be covered in this article such that the readers can develop
a better understanding of this technique.

Geocoding/reverse geocoding can be generally categorized into two groups: conventional and online geocoding/reverse geocod-
ing. Conventional geocoding/reverse geocoding practices are usually conducted by GIS professionals using existing GIS software,
and users can have more control on the reference data and geocoding/reverse geocoding method. Online geocoding/reverse
geocoding are mostly published by commercial companies as web services, and users can send requests according to predetermined
format and receive results from these services. Compared with conventional offline geocoding/reverse geocoding, online services
can be readily integrated into modern systems developed on different platforms or in different programming languages. This
platform- and language-independent feature has made online geocoding/reverse geocoding services enjoy great popularity in
modern information systems. This article also covers online geocoding/reverse geocoding.

The remainder of this article is organized as follows. Section “Principles and Methods of Geocoding/Reverse Geocoding”
provides the principles, methods, and quality of geocoding/reverse geocoding and relevant metrics for quality evaluation. Section
“Geocoding/Reverse Geocoding Applications” introduces the applications of geocoding/reverse geocoding. Privacy issues in
geocoding/reverse geocoding are covered in section “Location Privacy in Geocoding/Reverse Geocoding.” The challenges in
geocoding/reverse geocoding are given in section “Recent Trends and Challenges.” Finally, section “Conclusion” concludes
with a summary of this work.
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1.08.2 Principles and Methods of Geocoding/Reverse Geocoding

1.08.2.1 Principles

With substantial demand in a wide range of applications, geocoding/reverse geocoding has become a fundamental module of most
GIS software packages. This section examines the principles and methods of geocoding/reverse geocoding. First and foremost, we
need to understand the importance of geocoding/reverse geocoding in various applications before we dig into more details. Survey
data have been widely used as input for analysis in many disciplines, for example, public health, geography, and sociology. In many
cases, the address data are also collected from the subjects, which enable researchers to ask and answer questions from a spatial
perspective. However, we need to use geocoding to transform addresses to geographic locations before we could perform spatial
analysis to examine the spatial patterns of the phenomena. Equally important is the use of geocoding to associate collected data
with various data (e.g., demographic data, socioeconomic status (SES) data, and environmental data) compiled by federal and local
government agencies, organizations, and commercial companies and reveal the underlying patterns for policy making (Rushton
et al., 2006). For example, the decennial census conducted by the US Census Bureau has been an important source of various demo-
graphic and SES data at different spatial levels (e.g., census blocks, block groups, and census tracts). The zonal system used by the US
Census Bureau is characterized by a population-based subdivision of the United States. As a matter of fact, the US Census Bureau
also sends out surveys to the households and performs geocoding to link the data with corresponding census zones. Geocoding
provides an avenue for the researchers to link their data to a wide range of other data such that they could reveal new patterns
or discover new knowledge. Fig. 1 demonstrates how geocoding can be used to aggregate the address data at different spatial units
and link them with other existing data. Note that the users can use GIS software packages to spatially join the collected data to other
data conveniently once they obtain the geographic locations of the address data using geocoding.

Fig. 1 Using geocoding to link input data to other data at different spatial scales.
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Since address data are the primary input for geocoding, we need to develop a good understanding of address data before we
could perform geocoding/reverse geocoding procedures more effectively. An address is a piece of text that describes and identifies
the location of a specific residence. Different countries may have different postal systems. However, a residential address is usually
composed of a series of components, for example, house number, street name/type, city name, state/province name, and zip code.
Note that duplicates may exist for one component of an address within a postal system but the whole combination should always
be unique. In most cases, a postal system will have a set of standards for addresses. For example, the United States Postal Service
(USPS) has its postal addressing standards that describe both standardized address formats and contents. It is important that the
address data adhere to these standards during data collection such that they could be readily processed during geocoding. Note that
there exist many web services that can verify and validate addresses and can give the users a standardized address. These address
standardization tools have been widely used in various software systems to improve the accuracy of address data. In addition to
residential addresses, post-office box (POB) addresses are also widely used. Since the location of a POB address usually differs
from the location of a physical residence, the use of POB addresses poses challenges to geocoding and subsequent analysis (Hurley
et al., 2003). Thus, geocoding practitioners need to take into account address type during the geocoding procedure.

A geocoding procedure is usually composed of several components: the input data, reference datasets, a processing method, and
output (Goldberg et al., 2007; Karimi et al., 2004; Levine and Kim, 1998), as shown in Fig. 2. As mentioned earlier, the input data
usually come from surveys or other sources and are characterized by records with address information. The reference datasets could
be in a variety of forms, for example, address point data, road data, and parcel data. A processing algorithm uses the reference data-
sets to match an input address record to a specific geographic location (latitude/longitude). Note that the reference data should
maintain a certain level of accuracy; otherwise, the locations produced from geocoding will be inaccurate. After the geocoding proce-
dure, each address record that can be geocoded is associated with a geographic location.

Fig. 2 could also be used to demonstrate the building blocks of a reverse geocoding procedure. The input data for reverse geo-
coding will be a set of geographic coordinates, which could be acquired through stand-alone Global Positioning Systems (GPS)
units or GPS receivers installed on various mobile devices. A processing algorithm looks up the geographic features in the reference
datasets to obtain a feature or features that are close to the input point and satisfy a set of constraints from the user. Thus, reverse
geocoding could be considered as a spatial query process that retrieves the features around a given input point from the reference
datasets and returns the results to the user. Note that the features in reverse geocoding are not limited to addresses and can also
include a variety of feature types. These features are usually termed points of interest (POIs). The output of a reverse geocoding
procedure is a feature or a set of features that satisfy certain constraints (e.g., distance and feature type) from the user.

1.08.2.2 Methods

The methods for geocoding/reverse geocoding rely on the reference datasets, and users need to develop a good understanding of
various reference datasets first. Reference data could use different data models, for example, point, polyline, and polygon. Fig. 3
gives some examples of the popularly used reference data: address point, parcel, road, and other spatial units (e.g., counties)
data. Note that the reference data should be standardized and appropriately indexed before they are used for geocoding. As for
the reference data for reverse geocoding, they should be spatially indexed to speed up spatial query.

Fig. 4 illustrates the general workflow of a geocoding procedure, which includes tokenization, standardization, and address
matching (Goldberg et al., 2007). Specifically, in the context of geocoding, tokenization refers to the practice of splitting a whole
address into different components. Then, the standardization step transforms each component into standardized form such that it
can be used for address matching. In the address matching step, the components of an input address record are used to match the
address to a record in the reference datasets. Note that the users can set relevant constraints for the matching step. A scoring
algorithm is usually used to assign a score to a matched record. For example, if all the components of an input address have
been matched with a record in the reference dataset and an accurate location can be determined, this geocoded record will have
a high score; otherwise, if only parts of the components can be matched and the returned geographic point is derived from the refer-
ence datasets, the matching can have a low score. Finally, if the matching is successful, a geocoded location will be returned as the
result of the geocoding procedure.

Fig. 2 Components of the geocoding procedure.
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Address point data use points to represent address locations, and each record includes the address information, which can be
used to match the address data during geocoding. The point feature associated with each record could be derived from parcel
data. Furthermore, high-resolution remote sensing image data have also been used to improve the spatial accuracy of the point loca-
tion. For example, a point could be positioned based on the footprint of the residence. Each record in the reference address point
dataset contains the different components (e.g., house number, prefix direction, street name, street type, city, state, and zip code) of
an address. During the geocoding process, the processing algorithm first splits an input address record into corresponding compo-
nents and then compares it with the reference data to match it to a point location. Note that there could be many variations in the
components of an address. For example, according to the USPS, the standard suffix abbreviation for “AVENUE” is “AVE.”However,
commonly used suffixes or abbreviations also include “AV” and “AVEN,” to name a few. Moreover, there could also be many
misspellings in the input address records during data collection. Thus, these issues should also be taken into account in the process-
ing algorithm. Techniques such as soundex (a phonetic index system that indexes information based on word sounds) can be used
to deal with these issues (Zandbergen, 2008). It is also worth mentioning that it is expensive to compile and maintain large address
point datasets. Countries such as Australia, the United Kingdom, and Canada have national address point datasets. In the United
States, although many counties and states have built their address point datasets, a national address point database does not exist at
this moment.

Parcel data have also been widely used as the reference datasets in geocoding, and Fig. 3B gives an example of the layout of parcel
data. Similarly, each record in the parcel data has address and geometry information. Note that while fine-grain address point data
could be used to link an address with a building structure, parcel data could at most link an address with a parcel or the centroid of
a parcel. The matching process could also be done in the samemanner. The compilation andmaintenance of large parcel data is also

Fig. 3 Examples of various reference data.

Fig. 4 The general workflow of a processing algorithm.
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costly. In the United States, parcel data are usually managed by local government agencies, which limits EL id¼“del19” orig¼“s”; the
use of parcel data in nationwide geocoding practices. It should also be noted that since the centroid of a parcel is usually used as the
result for an input address in a geocoding procedure, parcel sizes will have impacts on positional accuracy.

The use of road data in geocoding has enjoyed great popularity in the past few decades. One important reason is the availability
of national road datasets from the US Census Bureau’s Topologically Integrated Geographic Encoding and Referencing (TIGER)
products. The road datasets from the TIGER/Line dataset have been widely used in geocoding practices. The users can join the
road dataset to an address range dataset such that each road contains address range information. Due to the growing customer needs
for geocoding, the US Census added Address Range Feature shapefiles (ADDREFEAT) to the TIGER/Line products beginning in
2011. Note that while the TIGER road datasets could also be used for other purposes (e.g., transportation studies), the address range
feature data are specially designed for address geocoding. Fig. 5 shows the address feature data from the 2015 TIGE/Line products
for Salt Lake City, Utah. Note that some road segments are not included in this dataset because they have no addresses (residences)
associated with them. Each record includes a series of attributes that are important for geocoding, and Table 1 lists some key
attributes.

With given road or address range feature data from TIGER/Line products, the input addresses can be geocoded using an address
interpolation algorithm. Fig. 6 gives a demonstration of address interpolation in street geocoding. Each road segment in the refer-
ence datasets includes the address range on the left and right side of the road, and the house number from the input address record is
used to interpolate the address location. It is worth mentioning that the address range for each side of the road segment can contain
more addresses than the true address range. For example, the true address range on the left side of the road in Fig. 6 is 101–107,
while the address range in the reference data is 101–109. Note that the offsets along the road segment and perpendicular to the road

Fig. 5 Address range feature data in Salt Lake City.

Table 1 Key record attributes in the address range feature dataset

Field name Description

FULLNAME The full name of the road segment
LFROMHN The beginning address number on the left side of a road

segment
LTOHN The ending address number on the left side of a road

segment
RFROMHN The beginning address number on the right side of a road

segment
RTOHN The ending address number on the right side of a road

segment
ZIPL The zip code on the left side of a road segment
ZIPR The zip code on the right side of a road segment
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segment are usually given in the reference datasets. The offsets are used to compute the location of the geocoded point. It should
also be noted that a road segment is directional in geocoding, and the starting and end node information can be used to determine
the left and right side of the road. In the United States, the national TIGER/Line datasets are available to the public at no cost, which
makes street geocoding a widely used method in geocoding practices.

Fig. 7 gives an example of using address range feature data for geocoding. Specifically, the input address is “332 S 1400 E, SALT
LAKE CITY, UT, 84112”; the reference data used are the address range feature data shown in Fig. 5, and geocoding was performed in
ArcGIS 10.1. Note that the start point of the input road segment is located at the northmost node while the endpoint at the south-
most node. The address ranges on the left and right side of the road are 301–399 and 300–398, respectively. The house number 332
from the input address, the address range data, and the road geometry were used to compute the location of the address. The struc-
ture location of the input address is also shown in Fig. 7, and there is a displacement between the interpolated point from geocoding
and the true structure location. This displacement can represent the positional accuracy, which will be discussed in more detail in
section “Geocoding/Reverse Geocoding Quality.”

In addition to the aforementioned methods, other areal unit features (e.g., zip code, city, county, and state boundary lines) in
different zoning systems can also be used for geocoding (Goldberg and Cockburn, 2012). Similar to parcel geocoding, when these
areal unit features are used as the reference data for geocoding, the returned results are the centroids of these features. Note that
the centroid computed for an irregular area unit can fall within another areal unit, which can cause significant errors and impact
the results (Goldberg and Cockburn, 2012). It is also worth mentioning that areal unit features have also been widely used in reverse
geocoding. This process is also termed spatial join in GIS. For example, Nguyen et al. (2016) made use of the census tract boundary
data to match geotagged tweets to the census tracts they fall within such that demographic and SES data can be linked to study the
social environment at the neighborhood level.

Fig. 6 Address interpolation in street geocoding.

Fig. 7 A geocoded address using the address range feature data in ArcGIS.
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Note that the geocoding procedure has evolved over time with the improvement of reference datasets and processing algo-
rithms. For example, the quality of reference data has been improved significantly from the early Dual Independent Map Encoding
data to the widely used TIGER road data and the recent TIGER address range feature data. A study done by Zandbergen et al. (2011)
examined the positional accuracy of TIGER 2000 and 2009 data, and the results indicate that TIGER 2009 data are consistently
more accurate than TIGER 2000 data. It should also be noted that the choice of the resolution of reference data for geocoding
depends on the context and the methods to be used in subsequent analysis procedure. At the same time, a significant amount
of research has been done to develop new processing algorithms to further improve the geocoding procedure. For example,
many composite methods have been proposed to ensure that more address records can be successfully matched during the
geocoding procedure.

1.08.2.3 Online Geocoding/Reverse Geocoding

Online geocoding/reverse geocoding refers to web services that can provide geocoding/reverse geocoding services to the
users, and the past few years have witnessed the great popularity of online geocoding/reverse geocoding (Kounadi et al.,
2013; Roongpiboonsopit and Karimi, 2010a). Compared with conventional geocoding/reverse geocoding, online geocoding/
reverse geocoding services have several advantages. First, the users do not need to compile, process, or manage reference datasets
in an online setting. Second, online geocoding services provide easy-to-use, language and platform-independent representational
state transfer (REST) application programming interfaces (APIs) such that the users can conveniently perform geocoding
operations. For example, most online geocoding/reverse geocoding services use Extensible Markup Language (XML) or JavaScript
Object Notation (JSON) as the output formats, which enables the users to integrate these services into different computer
systems. However, online geocoding services also come with a number of disadvantages. First, the users cannot manage or
control the reference data, the constraints, or the parameters for geocoding/reverse geocoding, which makes it difficult to evaluate
the quality. Second, most service providers have set count limits for the number of queries the users can make without any cost,
and the users need to buy special licenses before they could use these online services to make large batches of requests. Another
constraint is that the users need internet access to use these online services.

Online reverse geocoding services play a significant role in LBS. In a typical LBS application, a user retrieves POIs close to his or
her current location for a certain purpose. For example, users can use a mobile application named Yelp in the United States to search
for different types of nearby restaurants through its reverse geocoding services. Table 2 lists several popular free reverse geocoding
services and their count limits. Note that it is very expensive to compile, update, and maintain the data behind these online reverse
geocoding services. Most companies provide their free online reverse geocoding services to basic users with a daily count limit and
commercial services to advanced users at a certain price. Since the count limit usually applies to the device, these free online reverse
geocoding services will suffice for most client-side applications, and only those server-side applications that make a large number of
reverse geocoding requests will need special licenses.

With the growing demand for online geocoding/reverse geocoding services and the rapid development of computing technol-
ogies, more andmore federal or state government agencies have started to build and publish their own online services. For example,
the US Census Bureau has published an online geocoding/reverse geocoding service for public use. In addition to the standardized
REST APIs, the US Census also provides a user-friendly online graphical user interface that enables users to upload address data and
perform a batch processing operation. Another advancement made by the new US Census online services is that they enable the
users to choose the reference data for geocoding/reverse geocoding. The users can use either the most current TIGER/Line data
or the 2010 TIGER/Line data for geocoding/reverse geocoding. This gives the users more control over the reference data used in geo-
coding/reverse geocoding. Another example for online geocoding/reverse geocoding services developed by government agencies
comes from the Automated Geographic Reference Center (AGRC) – the GIS Department of Utah in the United States. AGRC has
published its online geocoding/reverse geocoding services to satisfy various data needs in Utah. One novel feature provided by
AGRC’s services is that they enable the users to choose a spatial reference for geocoding/reverse geocoding. For example, the
user can choose to use either a geographic coordinate system (e.g., World Geodetic System (WGS) 1984) or a projected coordinate
system (e.g., Web Mercator) for geocoding/reverse geocoding. Furthermore, a number of other features (e.g., allowing the use of
different types of geometry for spatial queries) are still under development. Moreover, AGRC also provides the examples of using
these services in different programming languages and publishes the source code on GitHub. In summary, all these endeavors made
by federal, state, or local government agencies will accelerate the development of online geocoding/reverse geocoding services and
play a significant role in data sharing in the era of open science.

Table 2 Examples of free online reverse geocoding services

Service name Company Limitations Output format

GeoNames Marc Wick 2000 requests/h XML/JSON
Google Maps Google 2500 requests/day XML/JSON
MapQuest AOL 5000 requests/day XML/JSON
Nominatim Nominatim 1 request/s XML/JSON
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1.08.2.4 Geocoding/Reverse Geocoding Quality

Since geocoding usually serves as one step and provides location data for subsequent analysis and computation in many research
endeavors, its quality has significant impacts on subsequent procedures and the final results (Zandbergen et al., 2012). Thus, we
need to develop a better understanding of the quality of the geocoding procedure before we could analyze the data and interpret
the results correctly. Popular metrics to evaluate geocoding quality include positional accuracy, match rate, and repeatability
(Zandbergen, 2009b). Online reverse geocoding has been widely used in various LBS applications, and positional accuracy is
also an important metric to evaluate reverse geocoding quality.

Positional accuracy is an issue that can never be overemphasized in geocoding and reverse geocoding. Positional errors in
geocoding/reverse geocoding can propagate to subsequent spatial analysis and influence the results directly, and a significant
body of research has been conducted to examine error propagation in various applications (Jacquez, 2012; Karimi et al., 2004;
Zandbergen et al., 2012). With the popularity of mobile computing in the past few years, positional accuracy in geocoding/reverse
geocoding is becoming more significant. Fig. 8 illustrates the locations and displacements relevant to the positional accuracy of
geocoding/reverse geocoding. The detailed descriptions are listed in Table 3. In a geocoding scenario, the user can obtain a location
point p2 for an input address with the true location p3. The distance d2 between p2 and p3 can represent the positional accuracy of the
geocoding procedure. If address point data are used as the reference data in geocoding, d2 is the displacement between the address
point and its true location; if street centerline data are used, the accuracy of the road geometry and the offsets along and perpen-
dicular to the road segment both contribute to the d2. Note that p3 can be derived from GPS units, large-scale parcel maps, or geore-
ferenced high-resolution remote sensing image to compute d2 and evaluate positional accuracy in geocoding practices (Bonner
et al., 2003; Cayo and Talbot, 2003; Curtis et al., 2006; Roongpiboonsopit and Karimi, 2010a; Strickland et al., 2007; Zandbergen
and Green, 2007; Zandbergen et al., 2011).

With the advent of GPS-enabled mobile devices, mobile computing has enjoyed great popularity in the past few years, and
online reverse geocoding services have been widely used in various LBS applications. In high-density urban areas, the GPS signal
may be impacted by obstructions such as buildings, which results in inaccuracy in the location derived from GPS-enabled mobile
devices; moreover, locations derived fromWi-Fi and cellular positioning have large errors and cannot satisfy the accuracy needed by
many LBS applications (Zandbergen, 2009a). A typical LBS application is used as an example to demonstrate the positional accuracy

Fig. 8 Illustration of positional accuracy in geocoding and reverse geocoding.

Table 3 Positional accuracy of geocoding/reverse geocoding

Parameter Description

p0 The true location of a user’s location
p1 The input query point for the reverse geocoding
p2 The derived point from geocoding/reverse geocoding
p3 The true location of a target structure (centroid of the structure footprint)
d0 The displacement between the input point and the true location of it
d1 The distance between the input point and the derived point from reverse geocoding
d2 The displacement between the derived point from geocoding/reverse geocoding and the true

location of the target address/POI
d3 The distance between the input point for reverse geocoding services and the true location of the

target address/POI
d4 The distance between the true location of the input point and the true location of the target

address/POI
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of online reverse geocoding services and mobile devices. As shown in Fig. 8, in the context of a LBS application, p0 denotes the true
location of a user, p1 is the input query point derived from a mobile device, p2 is the derived point from a reverse geocoding service,
and p3 is the true location of the POI. Theoretically, the true distance d4 between the user and the POI should be used in LBS appli-
cations; however, since the displacement d0 caused by mobile devices and d2 from online reverse geocoding services are usually
unavoidable, the distance d1 is what the user derives in a LBS application. One example of d0 is the displacement caused by GPS
receivers: the user gets his or her location p1 from GPS receivers, while the true location is p0. It is worth mentioning that most
modern operating systems for mobile devices provide relevant APIs to derive geographic locations. Note that locations derived
from different sources (e.g., GPS receivers, Wi-Fi access points, and cell powers) vary in positional accuracy (Zandbergen,
2009a). A study conducted by Zandbergen and Barbeau (2011) examined the accuracy of assisted GPS (A-GPS) on mobile phones
under diffident conditions (static and dynamic outdoor tests and static indoor test), and the results indicate that A-GPS is accurate
enough to satisfy the needs of most LBS applications. However, it may still be challenging to use locations derived from mobile
devices in some special LBS applications (e.g., locating a specific POI in urban areas with high POI density). Thus, developers should
take into account positional accuracy when they design and implement reverse geocoding services and LBS applications.

Match rate, also coined completeness, is defined as the percentage of data records that are successfully matched (Zandbergen,
2008). It has become a routine to include the match rate of the geocoding procedure in most studies. It should be noted that match
rate itself cannot represent the quality of a geocoding procedure. For example, a geocoding procedure based on address point data
could have a lower match rate than one based on road centerline data. However, the geocoded points derived from the former are
usually more accurate than the results from the latter in terms of positional accuracy. Although there is no consensus on the
minimum match rate for each specific application, many studies have been conducted on this topic. For example, Ratcliffe
(2004) used Monte Carlo simulation to replicate a declining match rate, and the result indicates that the estimated minimum
reliable match rate for crime mapping is 85%.

Repeatability refers to how sensitive the results are to variation in different components of geocoding (e.g., reference datasets,
and matching algorithm) (Zandbergen, 2008). Whitsel et al. (2006) used addresses in 49 US states to evaluate geocoding services
provided by four vendors, and the results revealed that significant differences exist in match rate, positional accuracy, and concor-
dance between established and derived census tracts. Note that these metrics can also be used to evaluate online geocoding services
(Roongpiboonsopit and Karimi, 2010a,b). It is worth mentioning that when evaluating geocoding quality, we should take into
account all these metrics; otherwise, the conclusion could be biased.

1.08.3 Geocoding/Reverse Geocoding Applications

Geocoding and reverse geocoding have been widely used in a variety of fields. This subsection gives a brief review of various kinds of
applications of geocoding/reverse geocoding. Specifically, the applications of geocoding in health, crime, and traffic accident studies
are covered, and the applications of reverse geocoding concentrate on various LBS applications.

As noted, geocoding has been extensively used in health studies, for example, measures of accessibility, disease cluster analysis,
and exposure analysis. Accessibility studies in public health deal with measuring people’s accessibility to ability to access a wide
range of resources that have impacts on their health and well-being, for example, food outlets (Barnes et al., 2015; Vandevijvere
et al., 2016), health care facilities (Luo and Wang, 2003; Wan et al., 2012), and tobacco stores (Cantrell et al., 2016). Geocoding
is used to locate both facilities and residences in accessibility-related studies. In disease cluster analysis, geocoding is employed to
transform the patients’ addresses into geographic coordinates such that spatial analysis can be performed to detect clusters
(Glatman-Freedman et al., 2016). Exposure analysis focuses on examining the impacts of pollution on people’s health and
well-being, and geocoding is used to locate the residences of the subjects so that they can be linked to the environmental pollution
data (Bellander et al., 2001; Ganguly et al., 2015). Another important application of geocoding is to transform addresses into
geographic points in crime studies, for example, crime mapping and analysis (Andresen et al., 2016; Ratcliffe, 2002, 2004) and
residency restrictions for sex offenders (Rydberg et al., 2016; Zandbergen and Hart, 2009). Moreover, geocoding has also been
widely used to georeference police crash records to analyze traffic accidents and identity the road links that are more likely to cause
crashes (Erdogan et al., 2008).

Reverse geocoding has been widely used in a myriad of LBS applications. These applications are usually in an online setting.
Online reverse geocoding services provide addresses or various POIs to the users to satisfy their needs. Note that these online services
usually offer user-friendly interfaces such that users can make queries using different spatial or aspatial constraints. Moreover, these
online services can be readily integrated into various computer systems on different platforms. Besides satisfying the users’ infor-
mation needs in LBS applications, reverse geocoding has also been employed to build semantics for people’s GPS trajectories
(Cao et al., 2010; Lv et al., 2016), which can help us develop a better understanding of people’s exposure to social, cultural, and
physical environments.

1.08.4 Location Privacy in Geocoding/Reverse Geocoding

Since geocoding/reverse geocoding deals with sensitive location data, a great deal of attention is being paid to the privacy issues in
various geocoding/reverse geocoding applications (Armstrong et al., 1999; Cassa et al., 2006; Curtis et al., 2006; Kounadi et al.,
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2013; Kounadi and Leitner, 2014; Tompson et al., 2015; VanWey et al., 2005). For example, in the United States, many public
health researchers and practitioners deal with sensitive individual data in their work. Although the Health Insurance Portability
and Accountability Act issued by the US Department of Health and Human Services in 1996 has relevant regulations to protect
individually identifiable health information, geolocation privacy issues still exist because of the difficulty to quantify the risk of
disclosure. As mentioned earlier, it is a common practice to aggregate the collected data at a specific spatial level such that other
datasets can be linked and further analysis is performed. And privacy issues will arise when large-scale maps are published to present
the results to the public because detailed map data can be easily reverse geocoded to derive individual location and information. The
practice of using published maps and/or other related data to recover the identity of an individual and infer individual information
is termed reengineering (Curtis et al., 2006). Armstrong and Ruggles (2005) gave two examples of possible privacy violation in
geocoding/reverse geocoding applications: one is reengineering individual-level information from dot maps and the other one
rediscovering user location in LBS applications. Meanwhile, they also point out that the concepts of privacy issues change with
the development of technologies. For example, the widely available high-resolution remote sensing image data could not only
be used to construct more accurate structure-level reference data to improve geocoding quality but also be used to recover
individual-level information. Thus, the development of technologies provides us an avenue to improve geocoding/reverse geocod-
ing quality and also poses new challenges in privacy protection.

In order to reduce disclosure risk, a substantial body of research has been conducted on preserving individual confidentiality in
geocoding applications. Specifically, one simple method is to aggregate individual information to various geographic areas (e.g.,
census tracts, zip code zones, and counties) such that individual information will be protected. Note that if aggregated data are
used in subsequent analysis, the details of spatial patterns could be lost, which makes it difficult to detect clusters (Armstrong
et al., 1999). Furthermore, data aggregation can also lead to the modifiable unit area problem (Openshaw, 1984). Armstrong
et al. (1999) listed some alternative methods (e.g., individual affine transformations, random perturbation, aggregation, neighbor
information, and contextual information) that can mask individual information and preserve valuable information, and this line
of research has attracted significant research attention in the past few years (Wieland et al., 2008; Zhang et al., 2015). A recent summary
of the popularly used geographic masking methods was given by Kounadi and Leitner (2015). According to Armstrong et al. (1999),
the methodology used to evaluate the effectiveness of geographic masking methods covers three aspects: (1) preserving information,
(2) preserving links to other spatial data, and (3) preserving confidentiality. Note that the information to be preserved can be reflected
in many forms (e.g., pairwise relations, event–geography relations, clusters, trends, and anisotropies) and different characteristics are
used to store the information (e.g., distance, orientation, and directionality) (Armstrong et al., 1999). Thus, when evaluating the capa-
bilities of geographic masks to preserve information, we need to take into account the application context (i.e., what information we
should prioritize to preserve). For example, if we are to study the spatial pattern of disease incidences, the priority will be placed on
preserving the spatial pattern information; however, if we study the effects of environmental exposure on people’s health conditions,
we may need to take into consideration preserving the distance between residences and the pollution sources.

With the popularity of various LBS applications, location privacy has also attracted a significant amount of attention. In LBS
applications, users provide their locations as the input for LBS services to search and retrieve relevant POIs. This process poses signif-
icant disclosure risk to the users because the attackers can retrieve the location and identify the user (Wernke et al., 2014). Many
countermeasures have been put forward to protect location privacy: regulatory strategies, privacy policies, anonymity, and obfus-
cation (Duckham and Kulik, 2006). Among these countermeasures, k-anonymity is a fundamental method that has been widely
used in many studies (Gedik and Liu, 2008; Krumm, 2009). The concept of k-anonymity was originally proposed to protect privacy
in the data released from a data holder, and a release is k-anonymous if each person’s information is indistinguishable from at least
k�1 other persons’ information in the same release (Sweeney, 2002). Location k-anonymity can be achieved when the location
information from amobile user cannot be distinguished from the location information of at least k�1 other mobile users (Gruteser
and Grunwald, 2003). Location k-anonymity has been extensively used as a metric for confidentiality preservation in many studies
(Tribby et al., 2015; Zhang et al., 2015). It should be noted that we should take into account privacy issues if we use any individual-
level location data in our research.

1.08.5 Recent Trends and Challenges

1.08.5.1 Accessibility

The Euclidean distance has been widely used in various geocoding/reverse geocoding applications. For example, the Euclidean
distance between the geocoded point and the true address location is computed to evaluate the positional accuracy of a geocoding
procedure. Note that we need to take into account the application context when evaluating the impacts of positional accuracy on the
final results. For example, for certain studies that employ the spatial analysis methods that rely on Euclidean distance, the positional
error of the geocoded locations can influence the results directly, while for the studies that use analysis methods based on other
types of distances, positional accuracy may not directly reflect variations in the results. For example, Euclidean distance can be
used as an effective measure in environment exposure studies but may cause large errors in accessibility studies. Fig. 9 lists different
measures of accessibility that differ in accuracy. Note that Euclidean distance is a very coarse measure of accessibility because people
need to travel within the road network to access different resources. Thus, most health studies that involve measuring people’s access
to health-related resources use network-based distance or travel time as the measure of accessibility (Delamater, 2013; Wan et al.,
2012). However, it is worth mentioning that most health studies that use network-based distance or travel time to measure
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accessibility do not consider traffic congestion and the travel delays caused by traffic lights. A more accurate travel time can be esti-
mated using traffic simulation, which can take into account these aspects by using relevant travel demand and traffic lights data.
Finally, with the rapid development of big data technologies and intelligent transport systems (ITS), travel time can be derived
from the real traffic data, which will provide a more accurate, detailed measure of accessibility for various applications.

In addition to various geocoding applications, the development of measures of accessibility also has implications on many
reverse geocoding applications. Specifically, one basic need in many LBS applications is to locate and access a nearby POI. Although
a few navigational LBS applications (e.g., Google Map) provide travel times based on real traffic data to the users, a majority of
reverse geocoding services and LBS applications still use Euclidean or network distance. It is expected that big data and ITS can
be leveraged to enrich reverse geocoding services and resolve this issue.

1.08.5.2 The Temporal Dimension

Traditional research on geocoding/reverse geocoding has primarily focused on the spatial dimension (e.g., spatial accuracy), and the
temporal dimension still remains underresearched. The temporal dimension in this context can have several aspects. First, note that
the reference data used in geocoding/reverse geocoding are not static and commercial data companies or government agencies will
add new records or update existing records during their maintenance. When users perform geocoding/reverse geocoding operations,
they are using a snapshot of the reference data. While users can choose to use a specific reference dataset in convention geocoding,
they have little control over the reference data when using commercial online geocoding services. Most commercial companies that
provide online geocoding/reverse geocoding services take it for granted that users will need the most current reference data for geo-
coding and have neglected the situations in which the users need to use historical reference data to link to other historical datasets.
As mentioned earlier, some online services like the US Census geocoding/reverse geocoding services have started to provide different
referent datasets for the users, and this issue concerning the temporal aspect of the reference data in these online services could be
solved with the development of technology and the increasing awareness of the importance of this problem. The implications of
using reference datasets compiled in different time periods on academic research lie in that they differ in data quality, and this can
influence subsequent analysis and the final results (Zandbergen et al., 2011). More research should be conducted to more thor-
oughly examine the impacts of data quality on spatial analysis and result interpretation.

Another aspect of the temporal dimension concerns the temporal attributes of various POIs used in reverse geocoding for LBS
applications. For example, the hours of operation for the POIs can be valuable for a myriad of LBS applications. A great many
commercial reverse geocoding services have included hours of operation of the POIs in the databases. For example, Google main-
tains its own POI database and provides reverse geocoding services to the users through the Google Places APIs. The users can get the
detailed information such as hours of operation about a specific POI, which provides great convenience to the users when they look
for certain POIs. However, note that the hours of operation information for a specific could be subject to change due to holidays or
other reasons, which indicates that it will be more valuable if these reverse geocoding service providers can connect with the busi-
ness owners and maintain this information in a dynamic manner. With the rapid development of the internet of things, this could
be achieved to further increase the value of various reverse geocoding services.

The temporal dimension of the POIs has also attracted significant attention in academia. From a supply and demand perspective,
the hours of operation of POIs can reflect the supply side and play a significant role in measuring people’s access to relevant
resources. Studies on food access have incorporated time into accessibility measurements (Chen and Clark, 2013, 2016), which
provides an avenue to discover new scientific findings. Moreover, recent studies have also proposed new methods to enrich reverse
geocoding services. For example, user check-in data have been used to construct temporal signatures and further enrich the temporal
information of the POIs (McKenzie and Janowicz, 2015; McKenzie et al., 2015). These endeavors based on data-drivenmethods will
further improve the quality of reverse geocoding services and have great potential in designing better LBS applications that can better
satisfy the users’ needs (Majid et al., 2013).

Fig. 9 Accuracy of different measures of accessibility.
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1.08.5.3 Indoor Positioning

With the rapid development of mobile computing, the past few years have witnessed the great popularity of indoor positioning, and
studies have shown that technologies such as Bluetooth and Wi-Fi can be readily used for indoor positioning (He and Chan, 2016;
Li et al., 2015; Liu et al., 2007). The advent of indoor positioning poses many new challenges to geocoding/reverse geocoding
practitioners. Mapping companies have incorporated indoor maps into their mapping practice such that users can locate various
POIs more conveniently. Fig. 10 gives an example of indoor mapping in Google Map for the Hollywood & Highland building
in Los Angeles, United States. Note that the physical address for the whole building is “6801 Hollywood Blvd, Los Angeles, CA
90028,” and many POIs are located inside the building. In this case, indoor positioning can be integrated with mobile mapping
to better facilitate pedestrian navigation in indoor environments, and relevant geocoding/reverse geocoding services need to be
developed such that users can readily locate relevant POIs in indoor environments. Indoor positioning has brought about many
new indoor LBS applications, and indoor location-based retailing is one of the novel applications (Thamm et al., 2016).
Small-sized beacons can be conveniently attached to different products, and when a consumer approaches an item, the smartphone
can sense the beacon, and relevant descriptions of the item can be retrieved and displayed to the user. In this regard, relevant
geocoding/reverse geocoding services can also be developed to satisfy these new needs in indoor environments.

1.08.5.4 Privacy in the Mobile Age

Mobile computing has become so pervasive that more and more mobile devices are being used in our daily life, and various mobile
applications on smartphones or smart watches can easily record people’s locations and trajectories, which pose significant risks on
people’s privacy. For example, a great many studies have shown that private information such as identity and home and workplace
locations can be inferred from GPS trajectory data by using other ancillary data and advanced data mining methods (Krumm, 2007;
Zheng, 2015). Recent studies reveal that even the trajectory data from geotagged social media posts can be used to infer various
private data (Kim et al., 2016; Luo et al., 2016). These new challenges have attracted significant attention, and a myriad of studies

Fig. 10 An example of indoor mapping in Google Map.
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have been conducted to develop relevant countermeasures to protect privacy from being exposed in the trajectory data (Fanaeepour
et al., 2015; Seidl et al., 2016). Furthermore, the rapid development of big data and new positioning technologies (e.g., indoor posi-
tioning) will cause many new privacy issues, and more research should be conducted to thoroughly examine these issues and
protect user privacy in the mobile age.

1.08.6 Conclusion

This work summarizes the principles, methods, and applications of geocoding/reverse geocoding and introduces the metrics for
evaluating the quality of geocoding/reverse geocoding procedures. Furthermore, the pros and cons of online geocoding/reverse geo-
coding services are also covered. The privacy issues in geocoding/reverse geocoding are introduced, and relevant countermeasures
for privacy protection are also discussed. Finally, the recent trends and challenges in geocoding/reverse geocoding are included to
shed light on potential future research directions in this field. In summary, it is necessary for geocoding/reverse geocoding users and
researchers to develop a good understanding of the theoretical underpinnings before they can use it correctly and more effectively
and contribute to its development.
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